Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 141-147    DOI: 10.3724/SP.J.1037.2013.00803
Current Issue | Archive | Adv Search |
PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION
TAO Nairong(), LU Ke
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

TAO Nairong, LU Ke. PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION. Acta Metall Sin, 2014, 50(2): 141-147.

Download:  HTML  PDF(2183KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This work summarized the deformation techniques of preparing the nanostructured metallic materials, including large-strain deformation techniques (clod rolling, accumulative cold-bonding, equal channel angular pressing, high pressure torsion), high-strain-rate deformation technique (dynamic plastic deformation), and high-strain-gradient deformation techniques (surface mechanical attrition treatment and surface mechanical grinding treatment). The effects of deformation modes and deformation parameters on grain refinement are analyzed. Future trends and challenges of the deformation techniques for preparing nanostructured metallic materials are discussed.

Key words:  nanostructured metallic material      plastic deformation      surface mechanical attrition treatment      dynamic plastic deformation      surface mechanical grinding treatment     
Received:  10 December 2013     
ZTFLH:  TG146  
Fund: Supported by National Basic Research Program of China (No.2012CB932201) and National Natural Science Foundation of China (Nos.51171181 and 51371172)
About author:  null

陶乃镕, 男, 1969 年生, 研究员

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00803     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/141

Fig.1  

累积叠轧原理示意图[7]

Fig.2  

等通道挤压原理示意图(图中体积单元1经过剪切变形后转变为体积单元2)[28]

Fig.3  

高压扭转原理示意图[5]

Fig.4  

动态塑性变形示意图

Fig.5  

表面机械研磨原理示意图和弹丸撞击样品受力状态示意图[12]

Fig.6  

表面机械碾压原理示意图和碾压头导致的塑性变形层[15]

[1] Segal V M, Reznikov V I, Drobyshevkij A E, Kopylov V I. Russ Metall, 1981; 1: 99
[2] Segal V M, Reznikov V I, Pavlik D A, Malyshev V F. Processes of Plastic Transformation of Metals. Minsk: Navuka Teknika, 1984: 295
[3] Valiev R Z, Annales de Chimie. Science des Materiaux, 1996; 21: 369
[4] Smirnova N A, Levit V I, Pilyugin V I, Kuznetsov R I, Davydova L S, Sazonnova V A. Fiz Met Metalloved, 1986; 61: 1170
[5] Zhilyaev A P, Nurislamova G V, Kim B K, Baro M D, Szpunar J A, Langdon T G. Acta Mater, 2003; 51: 753
[6] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[7] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G. Scr Mater, 1998; 39: 1221
[8] Hosseini S A, Manesh H D. Mater Des, 2009; 30: 2911
[9] Tsuji N, Saito Y, Lee S H, Minamino Y. 2nd Int Conf on Nanomaterials by Severe Plastic Deformation (SPD): Fundamentals Processing Applications, Vienna, Austria: Wiley-V C H Verlag Gmbh, 2003: 338
[10] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[11] Tao N R, Sui M L, Lu J, Lu K. Nanostruct Mater, 1999; 11: 433
[12] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. Acta Mater, 2002; 50: 4603
[13] Tong W P, Tao N R, Wang Z B, Lu J, Lu K. Science, 2003; 31: 299
[14] Lu K, Lu J. Mater Sci Eng, 2004; 375: 38
[15] Li W L, Tao N R, Lu K. Scr Mater, 2008; 59: 546
[16] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[17] Zhao W S, Tao N R, Guo J Y, Lu Q H, Lu K. Scr Mater, 2005; 53: 745
[18] Tao N R, Lu K. J Mater Sci Technol, 2007; 23: 771
[19] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[20] Bay B, Hansen N. Mater Sci Eng, 1989; A113: 385
[21] Ananthan V S, Leffers T, Hughes D A. Scr Metall Mater, 1991; 25: 137
[22] Hansen N. Mater Sci Technol, 1990; 6: 1039
[23] Li B L, Godfrey A, Meng Q C, Liu Q. Acta Mater, 2004; 52: 1069
[24] Liu Q, Huang X, Lloyd D J, Hansen N. Acta Mater, 2002; 50: 3789
[25] Wang Y M, Chen M W, Sheng H W, Ma E. J Mater Res, 2002; 17: 3004
[26] Valiev R Z, Krasilnikov N A, Tsenev N K. 5th Int Symp on Plasticity of Metals and Alloys, Prague, Czechoslovakia: Elsevier Science Sa Lausanne, 1990: 35
[27] Valiev R Z, Korznikov A V, Mulyukov R R. Symp on Nanophase Materials, at the Emrs 1992 Fall Meeting of the European-Materials-Research-Soc, Strasbourg, France: Elsevier Science Sa Lausanne, 1992: 141
[28] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[29] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[30] Bridgman P W. J Appl Phys, 1943; 15: 273
[31] Jiang H G, Zhu Y T, Butt D P, Alexandrov I V, Lowe T C. Mater Sci Eng, 2000; A290: 128
[32] Sakai G, Horita Z, Langdon T G. Mater Sci Eng, 2005; A393: 344
[33] Zhang Y, Tao N R, Lu K. Acta Mater, 2011; 58: 6048
[34] Hong C S, Tao N R, Huang X, Lu K. Acta Mater, 2010; 58: 3103
[35] Xiao G H, Tao N R, Lu K. Scr Mater, 2011; 65: 119
[36] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[37] Yan F K, Liu G Z, Tao N R, Lu K. Acta Mater, 2012; 60: 1059
[38] Wang H T, Tao N R, Lu K. Acta Mater, 2012; 60: 4027
[39] Huang F, Tao N R, Lu K. J Mater Sci Technol, 2011; 27: 1
[40] Luo Z P, Zhang H W, Hansen N, Lu K. Acta Mater, 2012; 60: 1322
[41] Zhu K Y, Vassel A, Brisset F, Lu K, Lu J. Acta Mater, 2004; 52: 4101
[42] Wang K, Tao N R, Liu G, Lu J, Lu K. Acta Mater, 2006; 54: 5281
[43] Sun H Q, Shi Y N, Zhang M X, Lu K. Acta Mater, 2007; 55: 975
[44] Zhang H W, Hei Z K, liu G, Lu J, Lu K. Acta Mater, 2003; 51: 1871
[45] Wu X, Tao N, Hong Y, Lu J, Lu K. Acta Mater, 2002; 50: 2075
[46] Tao N R, Wu X L, Sui M L, Lu J, Lu K. J Mater Res, 2004; 19: 1623
[47] Liu X C, Zhang H W, Lu K. Science, 2013; 342: 337
[48] Zener C, Hollomon J H. J Appl Phys, 1944; 15: 22
[49] Li Y S, Zhang Y, Tao N R, Lu K. Acta Mater, 2009; 57: 761
[50] Ashby M F. Philos Mag, 1970; 21: 399
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[6] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[7] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[8] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[9] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[10] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[12] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[13] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[14] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[15] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
No Suggested Reading articles found!