Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1195-1199    DOI: 10.3724/SP.J.1037.2011.00108
论文 Current Issue | Archive | Adv Search |
CORROSION BEHAVIORS OF Ni-Cr-Mo CORROSION RESISTENCE ALLOYS IN CaCl2-CaF2 MOLTEN SALT
PENG Haijian, JIN Jun, LI Defu, HU Jie
General Research Institute for Non-ferrous Metals, Beijing 100088
Cite this article: 

PENG Haijian JIN Jun LI Defu HU Jie. CORROSION BEHAVIORS OF Ni-Cr-Mo CORROSION RESISTENCE ALLOYS IN CaCl2-CaF2 MOLTEN SALT. Acta Metall Sin, 2011, 47(9): 1195-1199.

Download:  PDF(3415KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behaviors of Hastelloy C276 alloy and Hastelloy N alloy in 80%CaCl2+20%CaF2 (mass fraction) molten salt were investigated by XRD, OM, SEM and EDS. The results show that intergranular corrosion takes place in the two alloys, and the form of intergranular corrosion is a type of selective corrosion, i.e., the desolutions of Cr and Mo occur along the grain boundary. The corrosion rates of the two alloys decelerate with the increases of corrosion time because of the hindering effect of corrosion products on the element diffusion, and the relationship of mass loss ($C$) and corrosion time (t) can be described by formula of C=Ktn.
Key words:  Ni-Cr-Mo alloy      CaCl2-CaF2      molten salt      corrosion     
Received:  04 March 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00108     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1195

[1] Bai X D. Nuclear Material Chemistry. Beijing: Chemical Industry Press, 2007: 513

(白新德. 核材料化学. 北京: 化学工业出版社, 2007: 513)

[2] Xu W J, Ma C L, Sha R L. Corrosion and Protection in Nuclear Industry. Beijing: Chemical Industry Press, 1993: 147

(许维钧, 马春来, 沙仁礼. 核工业中的腐蚀与防护. 北京: 化学工业出版社, 1993: 147)

[3] Li Y S, Wang F G, Niu Y. Rare Met Mater Eng, 2001; 30: 376

(李远士, 王富岗, 牛炎. 稀有金属材料与工程. 2001; 30: 376)

[4] Lee Y Y, Mcnallan M J. Metall Trans, 1987; 18A: 1099

[5] Zahs A, Spiegel M, Grabke H J. Corros Sci, 2000; 42: 1093

[6] Juergen G G, Evan H G. Clinical Mater, 1989; 4: 225

[7] Rebak R B. Adv Mater Proc, 2000; 157: 37

[8] Wang F P, KangWL, Jing H M. Fundamentals of Electrochemical Corrosion, Methods and Applications. Beijing: Chemical Industry Press, 2008: 15

(王凤平, 康万利, 敬和民. 腐蚀电化学原理、方法及应用. 北京: 化学工业出版社, 2008: 15)

[9] Chinese Cankerous and Protection Society. Handbook of Metal Corrosion. Shanghai: Shanghai Scientific and Technical Publishers, 1987: 132

(中国腐蚀与防护学会. 金属腐蚀手册. 上海: 上海科学技术出版社, 1987: 132)
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[3] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[6] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[7] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[11] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[12] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!