Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (8): 1094-1098    DOI: 10.3724/SP.J.1037.2010.00623
论文 Current Issue | Archive | Adv Search |
STUDY ON CRITICAL TRANSITION RADIUS OF SECOND PHASE IN MICRO–ALLOYED STEEL
LIU Wenqing, ZHU Xiaoyong, ZHONG Liuming, WANG Xiaojiao, LIU Qingdong
Key Laboratory for Advanced Micro–Analysis, Shanghai University, Shanghai 200444
Cite this article: 

LIU Wenqing ZHU Xiaoyong ZHONG Liuming WANG Xiaojiao LIU Qingdong. STUDY ON CRITICAL TRANSITION RADIUS OF SECOND PHASE IN MICRO–ALLOYED STEEL. Acta Metall Sin, 2011, 47(8): 1094-1098.

Download:  PDF(705KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Precipitation strengthening can occur by means of two mechanisms, depending on the size. First, the shearing mechanism is active for small precipitates and the strengthening increases with the increase in the precipitate size. Second, the Orowan bypass process, where dislocation loops around precipitates is active for larger precipitates and the strengthening decreases with increase in the precipitate size. Therefore, there must exists a critical transition size of precipitates, in which the strengthening reaches the maximum. V–Nb–Mo micro–alloyed steels were isochronally tempered for 4 h at different temperatures and isothermally tempered for different times at 650 ℃ after solution treatment at 1200 ℃ for 0.5 h. The tempering conditions where the transition of precipitate strengthening mechanism occurred could be ascertained by the isochronal and isothermal hardness curves. The critical transition size of precipitates was determined to be about 1.0 nm by three dimensional atom probe (3DAP). Based on the precipitation strengthening theory and shearing mechanism dominated by coherency strengthening, the critical transition size of precipitates was calculated to be about 1.0 nm, which was in good agreement with the value measured by 3DAP. It indicates that the size of second phase can be well predicted by the precipitation strengthening theory when the micro–alloy steel reaches the maximum precipitation strengthening effect.
Key words:  three dimensional atom probe (3DAP)      micro–alloyed steel      critical transition radius      second phase     
Received:  17 November 2010     
ZTFLH: 

TG 142.1

 
  TG 156.1

 
Fund: 

Supported by National Natural Science Foundation of China (No.50931003) and Shanghai Leading Academic Discipline Project (No.S30107)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00623     OR     https://www.ams.org.cn/EN/Y2011/V47/I8/1094

[1] Yong Q L. Secondary Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 16

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 16)

[2] Cerezo A, Clifton P, Mark H, Galtrey J, Humphreys C J, Kelly T F, Larson D J, Perez S L, Marquis E A, Oliver R A, Sha G, Thompson K, Zandbergen M, Alvis R L. Mater Today, 2007; 10: 36

[3] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786

(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)

[4] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281

(刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008: 44: 1281)

[5] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281

(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009: 45: 1281)

[6] Liu Q D,Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288

(刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)

[7] Liu Q D,Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1297

(刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008: 44: 1297)

[8] Pereloma E V, Timokhina I B, Russell K F, Miller M K. Scr Mater, 2006; 54: 471

[9] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: Plenum Press, 2000: 170

[10] Ardell A. Metall Trans, 1985; 16A: 2131

[11] Danoix F, B´emont E, Maugis P, Blavette D. Adv Eng Mater, 2006; 8: 1202
[1] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[2] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[3] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[4] Jinhui LIU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys[J]. 金属学报, 2018, 54(8): 1141-1149.
[5] Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys[J]. 金属学报, 2018, 54(11): 1618-1624.
[6] Xiaolin LI, Yang CUI, Baoliang XIAO, Dawei ZHANG, Zhao JIN, Zheng CHENG. Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel[J]. 金属学报, 2018, 54(10): 1368-1376.
[7] Yanqiu WANG,Kun WU,Fuhui WANG. EFFECTS OF SECOND PHASES ON MICROARC OXIDATION PROCESS OF MAGNESIUM BASE MATERIALS[J]. 金属学报, 2016, 52(6): 689-697.
[8] Zhaoping LU, Suihe JIANG, Junyang HE, Jie ZHOU, Wenli SONG, Yuan WU, Hui WANG, Xiongjun LIU. SECOND PHASE STRENGTHENING IN ADVANCED METAL MATERIALS[J]. 金属学报, 2016, 52(10): 1183-1198.
[9] Zhen WANG,Bangxin ZHOU,Boyang WANG,Jiao HUANG,Meiyi YAO,Jinlong ZHANG. SECOND PHASE PARTICLES AND THEIR CORROSION BEHAVIOR OF Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb ALLOY[J]. 金属学报, 2016, 52(1): 78-84.
[10] Boyang WANG,Bangxin ZHOU,Zhen WANG,Jiao HUANG,Meiyi YAO,Jun ZHOU. CORROSION RESISTANCE OF Zr-0.72Sn-0.32Fe- 0.14Cr-xNb ALLOYS IN 500 ℃ SUPERHEATED STEAM[J]. 金属学报, 2015, 51(12): 1545-1552.
[11] WEI Tianguo, LONG Chongsheng, MIAO Zhi, LIU Yunming,LUAN Baifeng. CORROSION BEHAVIOR OF Zr-0.4Fe-1.0Cr-x Mo ALLOYS IN 500℃ and 10.3 MPa STEAM[J]. 金属学报, 2013, 49(6): 717-724.
[12] CHAI Linjiang LUAN Baifeng CHEN Jianwei QIU Risheng LIU Qing. EFFECT OF PRE-DEFORMATION ON GRAINS AND PRECIPITATES OF Zr-Sn-Nb ALLOY DURING AGING[J]. 金属学报, 2012, 48(1): 107-114.
[13] YANG Chunguang YAN Wei WANG Wei SHAN Yiyin YANG Ke WU Yican. CHANGES OF MICROSTRUCTURE AND MECHANICAL PROPERTY OF THE CLAM STEEL AFTER LONG TERM AGING AT 600 ℃[J]. 金属学报, 2011, 47(7): 917-920.
[14] CAO Xiaoxiao YAO Meiyi PENG Jianchao ZHOU Bangxin. CORROSION BEHAVIOR OF Zr(Fex, Cr1-x)2 ALLOYS IN 400℃ SUPERHEATED STEAM[J]. 金属学报, 2011, 47(7): 882-886.
[15] CHI Chengyu DONG Jianxin LIU Wenqing XIE Xishan. 3DAP INVESTIGATION OF PRECIPITATION BEHAVIOR OF Cu-RICH PHASE IN SUPER304H HEAT RESISTANT STEEL[J]. 金属学报, 2010, 46(9): 1141-1146.
No Suggested Reading articles found!