Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (8): 1141-1149    DOI: 10.11900/0412.1961.2017.00484
Orginal Article Current Issue | Archive | Adv Search |
Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys
Jinhui LIU1,2, Yingwei SONG1(), Dayong SHAN1, En-Hou HAN1
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Jinhui LIU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys. Acta Metall Sin, 2018, 54(8): 1141-1149.

Download:  HTML  PDF(7413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium and its alloys have become increasingly attractive in the automotive, 3C products and aerospace industries because of their advantages such as low density and high specific strength. In recent years, rare earth-Mg alloys have attracted much attention due to their high mechanical properties at room and elevated temperatures. Adjusting the microstructures by deformation treatment is a common method to improve the mechanical properties of Mg alloys. The microstructure especially the size, volume fraction and distribution of second phases in rare earth-Mg alloys will be changed during deformation treatment, which has a great effect on the corrosion resistance of Mg alloys. However, the studies on the effect of deformation treatment on the corrosion resistance of rare earth-Mg alloys are far away from sufficient. In this work, the corrosion behavior of cast and forged Mg-5Y-7Gd-1Nd-0.5Zr (EW75) alloys were studied by using SEM, XRD, mass loss measurements and electrochemical tests. The results indicate that the second phases are distributed along the grain boundaries of cast and forged EW75 alloys. Meanwhile, the second phases in forged EW75 alloy are finer and lower volume fraction than that in cast EW75 alloy. The micro-galvanic corrosion of the forged EW75 alloy is weaker in comparison with the cast EW75 alloy owing to the smaller size and lower volume fraction of second phases as well more compact surface film, resulting in the better corrosion resistance.

Key words:  Mg alloy      cast      forged      second phase      surface film      micro-galvanic corrosion     
Received:  20 November 2017     
ZTFLH:  O646  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0301105) and National Natural Science Foundation of China (No.51471174)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00484     OR     https://www.ams.org.cn/EN/Y2018/V54/I8/1141

Fig.1  Low (a, c) and high (b, d) magnified surface BSE-SEM images of the cast (a, b) and forged (c, d) EW75 alloys
Fig.2  EDS spectra of γ (a) and β (b) phases in Fig.1
Fig.3  Surface morphologies of the cast (a) and forged (b) EW75 alloys after etching
Fig.4  XRD spectra of the cast and forged EW75 alloys
Fig.5  Surface morphologies of the cast (a) and forged (b) EW75 alloys after immersion in 3.5%NaCl solution for 60 h (a) and 7 d (b)
Fig.6  Surface (a, b) and cross-sectional (c, d) morphologies of the cast EW75 alloy after immersion in 3.5%NaCl solution for 30 min (a, c) and 2 h (b, d) with removal of corrosion products
Fig.7  Low (a, c, e) and high (b, d, f) magnified surface morphologies of the forged EW75 alloys after immersion in 3.5%NaCl solution for 30 min (a, b), 2 h (c, d) and 24 h (e, f) with removal of corrosion products
Fig.8  Polarization curves comparison of cast and forged EW75 alloys in 3.5%NaCl solution
EW75 Ecorr / V icorr / (μAcm-2) bc / (-mVdec-1)
Cast
Forged
-1.75
-1.75
87.9
46.4
175
159
Table 1  Fitting results of polarization curves of EW75 alloys
Fig.9  EIS Nyquist plots and equivalent circuit of 自the cast and forged EW75 alloys in 3.5%NaCl solution (Rs—solution resistance, Qdl—electric double layer capacitance, Rt—charge transfer resistance, Qf—surface film capacitance, Rf—surface film resistance, L—inductance, RL—inductance resistance)
EW75 Rs
Wcm2
Qdl
mScm-2s-n
ndl Rt
Wcm2
Qf
mScm-2s-n
nf Rf
Wcm2
L
Hcm2
RL
Wcm2
Cast 19.04 19.04 0.93 220 5081 0.85 119.1 14120 2222
Forged 18.86 17.96 0.93 262 5910 0.71 222.6 14340 1764
Table 2  Fitting results of EIS spectra
Fig.10  Cross-sectional schematics of micro-galvanic corrosion of the cast (a, b) and forged (c, d) EW75 alloys before (a, c) and after (b, d) immersion in 3.5%NaCl solution
Fig.11  Cross-sectional schematics of surface film formation on the cast (a, b) and forged (c, d) EW75 alloys before (a, c) and after (b, d) immersion in 3.5%NaCl solution
[1] Pollock T M.Weight loss with magnesium alloys[J]. Science, 2010, 328: 986
[2] Westengen H, Rashed H M M A. Magnesium: Alloying [A]. Reference Module in Materials Science and Materials Engineering[C]. Amsterdam: Elsevier, 2016: 1
[3] Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[4] Song Y W, Shan D Y, Chen R S, et al.Investigation of surface oxide film on magnesium lithium alloy[J]. J. Alloys Compd., 2009, 484: 585
[5] Ding W J, Zeng X Q.Research and applications of magnesium in China[J]. Acta Metall. Sin., 2010, 11: 1450.(丁文江, 曾小勤. 中国Mg材料研发与应用[J]. 金属学报, 2010, 11: 1450)
[6] Song G, Atrens A.Recent insights into the mechanism of magnesium corrosion and research suggestions[J]. Adv. Eng. Mater., 2007, 9: 177
[7] Zhao X, Shi L L, Xu J.A comparison of corrosion behavior in saline environment: rare earth metals (Y, Nd, Gd, Dy) for alloying of biodegradable magnesium alloys[J]. J. Mater. Sci. Technol., 2013, 29: 781
[8] Chu P W, Marquis E A.Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior[J]. Corros. Sci., 2015, 101: 94
[9] Kang Y H, Wu D, Chen R S, et al.Microstructures and mechanical properties of the age hardened Mg-4. 2Y-2. 5Nd-1Gd-0. 6Zr (WE43) microalloyed with Zn[J]. J. Magnes. Alloys, 2014, 2: 109
[10] Wu D, Li S Q, Hong M, et al.High cycle fatigue behavior of the forged Mg-7Gd-5Y-1Nd-0.5Zr alloy[J]. J. Magnesium Alloys, 2014, 2: 357
[11] Zhen R, Sun Y S, Bai J, et al.Microstructures and mechanical properties of Mg-(11—13)Gd-1Zn alloys[J]. Acta Metall. Sin., 2012, 48: 733(甄睿, 孙扬善, 白晶等. Mg-(11—13)Gd-1Zn变形镁合金的组织和力学性能[J]. 金属学报, 2012, 48: 733)
[12] Zheng W C, Li S S, Tang B, et al.Effect of mischmetal on solidification microstructure and mechanical properties of AZ91D magnesium alloy[J]. Acta Metall. Sin., 2006, 42: 835(郑伟超, 李双寿, 汤彬等. 混合稀土对AZ91D镁合金组织和力学性能的影响[J]. 金属学报, 2006, 42: 835)
[13] Liu J H, Song Y W, Shan D Y, et al.Different microgalvanic corrosion behavior of cast and extruded EW75 Mg alloys[J]. J. Electrochem. Soc., 2016, 163: C856
[14] Liu J H, Song Y W, Chen J C, et al.The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy[J]. Electrochim. Acta, 2016, 189: 190
[15] Song Y W, Han E H, Shan D Y, et al.The role of second phases in the corrosion behavior of Mg-5Zn alloy[J]. Corros. Sci., 2012, 60: 238
[16] Song Y W, Shan D Y, Chen R S, et al.Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[J]. Corros. Sci., 2010, 52: 1830
[17] Zhang T, Shao Y W, Meng G Z, et al.Corrosion of hot extrusion AZ91 magnesium alloy: I—Relation between the microstructure and corrosion behavior[J]. Corros. Sci., 2011, 53: 1960
[18] Zhang T, Meng G Z, Shao Y W, et al.Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy[J]. Corros. Sci., 2011, 53: 2934
[19] Neil W C, Forsyth M, Howlett P C, et al.Corrosion of magnesium alloy ZE41—The role of microstructural features[J]. Corros. Sci., 2009, 51: 387
[20] Neil W C, Forsyth M, Howlett P C, et al.Corrosion of heat treated magnesium alloy ZE41[J]. Corros. Sci., 2011, 53: 3299
[21] Song G L, Atrens A, Wu X L, et al.Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corros. Sci., 1998, 40: 1769
[22] Song Y W, Han E-H, Shan D, et al The role of second phases in the corrosion behavior of Mg-5Zn alloy[J]. Corros. Sci., 2012, 60: 238
[23] Song Y W, Han E-H, Shan D Y, et al The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys[J]. Corros. Sci., 2012, 65: 322
[24] Liu Q.Reseach progress on plastic deformation mechanism of Mg alloys[J]. Acta Metall. Sin., 2010, 11: 1458(刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 11: 1458)
[25] Zhao D Q, Zhou J X, Liu Y T, et al.Microstructure and mechanical properties of Mg-4Zn-2Al-2Sn alloys extruded at low temperatures[J]. Acta Metall. Sin., 2014, 50: 41(赵东清, 周吉学, 刘运腾等. 低温挤压Mg-4Zn-2Al-2Sn合金的组织与力学性能研究[J]. 金属学报, 2014, 50: 41)
[26] Xia X S, Chen Q, Zhao Z D, et al.Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging[J]. J. Alloys Compd., 2015, 623: 62
[27] Li T, Zhang K, Du Z W, et al.Characterization of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy[J]. J. Rare Earths, 2013, 31: 410
[28] Li T, Du Z W, Zhang K, et al.Morphology and crystallography of β precipitate phase in Mg-Gd-Y-Nd-Zr alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2877
[29] Wang S D, Xu D K, Wang B J, et al.Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy[J]. Sci. Rep., 2016, 6: 23955
[30] Zhang X, Zhang K, Li X-G, et al.Comparative study on corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0. 5Zr alloy in 5% NaCl aqueous solution[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1018
[31] Song G L, Unocic K A.The anodic surface film and hydrogen evolution on Mg[J]. Corros. Sci., 2015, 98: 758
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[3] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[6] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[7] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[8] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[9] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[10] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[11] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[12] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[13] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[14] SUN Baode, WANG Jun, KANG Maodong, WANG Donghong, DONG Anping, WANG Fei, GAO Haiyan, WANG Guoxiang, DU Dafan. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. 金属学报, 2022, 58(4): 412-427.
[15] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
No Suggested Reading articles found!