|
|
Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys |
Jinhui LIU1,2, Yingwei SONG1( ), Dayong SHAN1, En-Hou HAN1 |
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
|
Cite this article:
Jinhui LIU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys. Acta Metall Sin, 2018, 54(8): 1141-1149.
|
Abstract Magnesium and its alloys have become increasingly attractive in the automotive, 3C products and aerospace industries because of their advantages such as low density and high specific strength. In recent years, rare earth-Mg alloys have attracted much attention due to their high mechanical properties at room and elevated temperatures. Adjusting the microstructures by deformation treatment is a common method to improve the mechanical properties of Mg alloys. The microstructure especially the size, volume fraction and distribution of second phases in rare earth-Mg alloys will be changed during deformation treatment, which has a great effect on the corrosion resistance of Mg alloys. However, the studies on the effect of deformation treatment on the corrosion resistance of rare earth-Mg alloys are far away from sufficient. In this work, the corrosion behavior of cast and forged Mg-5Y-7Gd-1Nd-0.5Zr (EW75) alloys were studied by using SEM, XRD, mass loss measurements and electrochemical tests. The results indicate that the second phases are distributed along the grain boundaries of cast and forged EW75 alloys. Meanwhile, the second phases in forged EW75 alloy are finer and lower volume fraction than that in cast EW75 alloy. The micro-galvanic corrosion of the forged EW75 alloy is weaker in comparison with the cast EW75 alloy owing to the smaller size and lower volume fraction of second phases as well more compact surface film, resulting in the better corrosion resistance.
|
Received: 20 November 2017
|
|
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0301105) and National Natural Science Foundation of China (No.51471174) |
[1] | Pollock T M.Weight loss with magnesium alloys[J]. Science, 2010, 328: 986 | [2] | Westengen H, Rashed H M M A. Magnesium: Alloying [A]. Reference Module in Materials Science and Materials Engineering[C]. Amsterdam: Elsevier, 2016: 1 | [3] | Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37 | [4] | Song Y W, Shan D Y, Chen R S, et al.Investigation of surface oxide film on magnesium lithium alloy[J]. J. Alloys Compd., 2009, 484: 585 | [5] | Ding W J, Zeng X Q.Research and applications of magnesium in China[J]. Acta Metall. Sin., 2010, 11: 1450.(丁文江, 曾小勤. 中国Mg材料研发与应用[J]. 金属学报, 2010, 11: 1450) | [6] | Song G, Atrens A.Recent insights into the mechanism of magnesium corrosion and research suggestions[J]. Adv. Eng. Mater., 2007, 9: 177 | [7] | Zhao X, Shi L L, Xu J.A comparison of corrosion behavior in saline environment: rare earth metals (Y, Nd, Gd, Dy) for alloying of biodegradable magnesium alloys[J]. J. Mater. Sci. Technol., 2013, 29: 781 | [8] | Chu P W, Marquis E A.Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior[J]. Corros. Sci., 2015, 101: 94 | [9] | Kang Y H, Wu D, Chen R S, et al.Microstructures and mechanical properties of the age hardened Mg-4. 2Y-2. 5Nd-1Gd-0. 6Zr (WE43) microalloyed with Zn[J]. J. Magnes. Alloys, 2014, 2: 109 | [10] | Wu D, Li S Q, Hong M, et al.High cycle fatigue behavior of the forged Mg-7Gd-5Y-1Nd-0.5Zr alloy[J]. J. Magnesium Alloys, 2014, 2: 357 | [11] | Zhen R, Sun Y S, Bai J, et al.Microstructures and mechanical properties of Mg-(11—13)Gd-1Zn alloys[J]. Acta Metall. Sin., 2012, 48: 733(甄睿, 孙扬善, 白晶等. Mg-(11—13)Gd-1Zn变形镁合金的组织和力学性能[J]. 金属学报, 2012, 48: 733) | [12] | Zheng W C, Li S S, Tang B, et al.Effect of mischmetal on solidification microstructure and mechanical properties of AZ91D magnesium alloy[J]. Acta Metall. Sin., 2006, 42: 835(郑伟超, 李双寿, 汤彬等. 混合稀土对AZ91D镁合金组织和力学性能的影响[J]. 金属学报, 2006, 42: 835) | [13] | Liu J H, Song Y W, Shan D Y, et al.Different microgalvanic corrosion behavior of cast and extruded EW75 Mg alloys[J]. J. Electrochem. Soc., 2016, 163: C856 | [14] | Liu J H, Song Y W, Chen J C, et al.The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy[J]. Electrochim. Acta, 2016, 189: 190 | [15] | Song Y W, Han E H, Shan D Y, et al.The role of second phases in the corrosion behavior of Mg-5Zn alloy[J]. Corros. Sci., 2012, 60: 238 | [16] | Song Y W, Shan D Y, Chen R S, et al.Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[J]. Corros. Sci., 2010, 52: 1830 | [17] | Zhang T, Shao Y W, Meng G Z, et al.Corrosion of hot extrusion AZ91 magnesium alloy: I—Relation between the microstructure and corrosion behavior[J]. Corros. Sci., 2011, 53: 1960 | [18] | Zhang T, Meng G Z, Shao Y W, et al.Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy[J]. Corros. Sci., 2011, 53: 2934 | [19] | Neil W C, Forsyth M, Howlett P C, et al.Corrosion of magnesium alloy ZE41—The role of microstructural features[J]. Corros. Sci., 2009, 51: 387 | [20] | Neil W C, Forsyth M, Howlett P C, et al.Corrosion of heat treated magnesium alloy ZE41[J]. Corros. Sci., 2011, 53: 3299 | [21] | Song G L, Atrens A, Wu X L, et al.Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corros. Sci., 1998, 40: 1769 | [22] | Song Y W, Han E-H, Shan D, et al The role of second phases in the corrosion behavior of Mg-5Zn alloy[J]. Corros. Sci., 2012, 60: 238 | [23] | Song Y W, Han E-H, Shan D Y, et al The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys[J]. Corros. Sci., 2012, 65: 322 | [24] | Liu Q.Reseach progress on plastic deformation mechanism of Mg alloys[J]. Acta Metall. Sin., 2010, 11: 1458(刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 11: 1458) | [25] | Zhao D Q, Zhou J X, Liu Y T, et al.Microstructure and mechanical properties of Mg-4Zn-2Al-2Sn alloys extruded at low temperatures[J]. Acta Metall. Sin., 2014, 50: 41(赵东清, 周吉学, 刘运腾等. 低温挤压Mg-4Zn-2Al-2Sn合金的组织与力学性能研究[J]. 金属学报, 2014, 50: 41) | [26] | Xia X S, Chen Q, Zhao Z D, et al.Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging[J]. J. Alloys Compd., 2015, 623: 62 | [27] | Li T, Zhang K, Du Z W, et al.Characterization of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy[J]. J. Rare Earths, 2013, 31: 410 | [28] | Li T, Du Z W, Zhang K, et al.Morphology and crystallography of β precipitate phase in Mg-Gd-Y-Nd-Zr alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2877 | [29] | Wang S D, Xu D K, Wang B J, et al.Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy[J]. Sci. Rep., 2016, 6: 23955 | [30] | Zhang X, Zhang K, Li X-G, et al.Comparative study on corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0. 5Zr alloy in 5% NaCl aqueous solution[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1018 | [31] | Song G L, Unocic K A.The anodic surface film and hydrogen evolution on Mg[J]. Corros. Sci., 2015, 98: 758 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|