|
|
CORROSION BEHAVIOR OF Zr(Fex, Cr1-x)2 ALLOYS IN 400℃ SUPERHEATED STEAM |
CAO Xiaoxiao1), YAO Meiyi1), PENG Jianchao2), ZHOU Bangxin1) |
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444 |
|
Cite this article:
CAO Xiaoxiao YAO Meiyi PENG Jianchao ZHOU Bangxin. CORROSION BEHAVIOR OF Zr(Fex, Cr1-x)2 ALLOYS IN 400℃ SUPERHEATED STEAM. Acta Metall Sin, 2011, 47(7): 882-886.
|
Abstract To study the corrosion behavior of second phase particles in zirconium alloys, Zr(Fex, Cr1-x)2 (x=1, 2/3, 1/3) metallic compounds which have the same composition as the second phase particles in Zr-4 alloy were prepared by vacuum non-consumable arc melting. XRD and energy filtered TEM were employed for analyzing the corrosion products, the element distribution and grain morphology after corrosion tests of Zr(Fex, Cr1-x)2 metallic compounds powder at 400 ℃ and 10.3 MPa superheated steam with different exposure times. The results show that Cr has a very strong effect on the corrosion resistance of Zr(Fex, Cr1-x)2 metallic compounds, increasing Cr content can improve the corrosion resistance. When Zr(Fex, Cr1-x)2 oxidation starts, zirconium oxide is formed while elements Fe and Cr are expelled from the zirconium oxide due to their low solid solubility in the oxide. α-Fe(Cr) and γ-Fe(Cr) are formed and then oxidized to the stable corrosion product (Fe, Cr)3O4. The different corrosion behaviors of metallic compounds will affect the microstructure evolution of zirconium oxide layer differently during the corrosion process, and hence affect the corrosion resistance of zirconium alloys.
|
Received: 20 April 2011
|
|
Fund: Supported by National Natural Science Foundation of China (No.50971084) and Shanghai Leading Academic Discipline Project (No.S30107) |
[1] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. At Energy Sci Technol, 2005; 39(suppl): 1(赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华. 原子能科学技术, 2005; 39(增刊): 1)[2] Zhou B X. J Met Heat Treat, 1997; 18(3): 8(周邦新. 金属热处理学报, 1997; 18(3): 8)[3] Zhou B X, Yang X L. Nucl Power Eng, 1997; 18: 511(周邦新, 杨晓林. 核动力工程, 1997; 18: 511)[4] Pˆecheur D, Lefebvre F, Motta A T, Lemaignan C, Wadier J F. J Nucl Mater, 1992; 189: 318[5] Li C, Zhou B X, Miao Z. Corros Prot, 1996; 8: 242(李 聪, 周邦新, 苗志. 腐蚀科学与防护, 1996; 8: 242)[6] Pˆecheur D. J Nucl Mater, 2000; 278: 195[7] Baek J H, Jeong Y H. J Nucl Mater, 2002; 304: 107[8] Yang X L, Zhou B X, Jiang Y R, Li C. Nucl Power Eng, 1994; 15: 79(杨晓林, 周邦新, 蒋有荣, 李聪. 核动力工程, 1994; 15: 79)[9] Toffolon–Masclet C, Brachet J C, Jago G. J Nucl Mater, 2002; 305: 224[10] Li Q, Zhou B X. Rare Met Mater Eng, 2000; 29: 283(李 强, 周邦新. 稀有金属材料与工程, 2000; 29: 283)[11] Engerton R F. Electron Energy Loss Spectroscopy. 2nd Ed., New York: Plenum Press, 1996: 323[12] Zhou B X, Miao Z, Li C. Nucl Power Eng, 1997; 18: 53(周邦新, 苗志, 李聪. 核动力工程, 1997; 18: 53)[13] Zhou B X, Li Q, Yao M Y, Liu WQ, Chu Y L. Nucl Power Eng, 2005; 26: 364(周邦新, 李强, 姚美意, 刘文庆, 褚于良. 核动力工程, 2005; 26: 364)[14] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 35: 1009)[15] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limback M, eds., Zirconium in the Nuclear Industry: 15th Int Symp Zirconium in the Nuclear Industry, ASTM STP 1505, West Conshohochen: American Society for Testing and Materials, 2009: 360 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|