Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (8): 927-936    DOI: 10.11900/0412.1961.2017.00055
Orginal Article Current Issue | Archive | Adv Search |
Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content
Xuan YU1, Zhihao ZHANG2(), Jianxin XIE1,2
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content. Acta Metall Sin, 2017, 53(8): 927-936.

Download:  HTML  PDF(2013KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-6.5%Si (mass fraction) alloy is an important soft magnetic material due to its excellent magnetic properties. However, the existence of ordered structure in a great amount is the fundamental cause of poor ductility of the alloy, which restricts the application of the alloy seriously. To modify the microstructure and crystal structure of Fe-6.5%Si alloy by rare earth micro-alloying is one of the significant methods to reduce brittleness and improve plastic deformation ability of the alloy. Whereas, there still lack of elaborate studies on order degree reduction mechanism, ductility improvement evaluation and its connections to a varying microstructure, rare earth distribution, etc., caused by rare earth doping, which restricts a deep understanding on rare earth micro-alloying mechanism and its application in this alloy. In this work, influences of Ce content (mass fraction) on microstructure, ordered structures and warm tensile property of the as-cast alloy were investigated, and the ductility improvement mechanism of the alloy caused by Ce micro-alloying was analyzed. The results indicate that, there is no evident variation of as-cast microstructure when Ce content is below 150×10-6, while the obvious microstructure refinement is observed when Ce content exceeds 210×10-6. Ce addition reduces the alloy's order degree significantly and thus improves its warm tensile ductility obviously. Compared with Ce undoped specimens, average tensile elongation to failure at 400 ℃ increases from 7.4% to 10.1%, 19.3% and 23.0% by 62×10-6, 150×10-6 and 210×10-6 Ce doping, respectively. Inter-granular brittle fracture characteristic occurs in fractured tensile specimens due to the obvious Ce enrichment at grain boundary when Ce content increases to 260×10-6 and 790×10-6, hence the average tensile elongation to failure at 400 ℃ reduces to 15.5% and 14.2%. A reasonable Ce content is within the range of (150~210)×10-6 to improve effectively the ductility of Fe-6.5%Si alloy.

Key words:  Fe-6.5%Si alloy      rare earth element      ordered structure      ductility      intermetallics     
Received:  22 February 2017     
ZTFLH:  TG11  
Fund: Supported by National Basic Research Program of China (No.2011CB606300) and High Technology Research and Development Program of China (No.2012AA03A505)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00055     OR     https://www.ams.org.cn/EN/Y2017/V53/I8/927

Sample Ce Si S P O C Fe
Ce-0 0 6.56 0.0057 0.0071 0.0005 0.023 Bal.
Ce-62 0.0062 6.62 0.0056 0.0063 0.0008 0.021 Bal.
Ce-150 0.0150 6.40 0.0049 0.0084 0.0004 0.026 Bal.
Ce-210 0.0210 6.52 0.0014 0.0068 0.0007 0.021 Bal.
Ce-260 0.0260 6.54 0.0014 0.0064 0.0006 0.020 Bal.
Ce-790 0.0790 6.57 0.0009 0.0072 0.0006 0.017 Bal.
Table 1  Chemical compositions of the Fe-6.5% Si alloy ingots with different Ce contents (mass fraction / %)
Fig.1  OM images of the Fe-6.5%Si alloy samples of Ce-0 (a), Ce-62 (b), Ce-150 (c), Ce-210 (d), Ce-260 (e) and Ce-790 (f)
Fig.2  SEM image (a) and EPMA maps of Ce (b), S (c), O (d) and C (e) elements in Ce-210 sample nearby the grain boundary (Ce-rich phases are marked by arrows)
Fig.3  SEM image (a) and EPMA maps of Ce (b) and S (c) elements in Ce-790 sample (Ce-rich phases are marked by arrows)
Fig.4  XRD spectra of the Fe-6.5%Si alloy with different Ce contents
Fig.5  DSC curves of the Fe-6.5%Si alloy with various Ce contents (a) and average relative peak area of B2 to A2 transformation, taking the average area of Ce undoped samples as 1.0 (b)
Fig.6  {100} superlattice spot dark field TEM images and SAED patterns (insets) of <001> zone axis of samples Ce-0 (a), Ce-62 (b), Ce-150 (c) and Ce-210 (d) (APB—antiphase boundary)
Fig.7  Schematic of ordered structure formation characteristics in the Fe-6.5%Si alloy with Ce undoped and doped
Fig.8  Engineering stress-strain curves (a) and average plastic elongation to failure and average ultimate tensile stress curves (b) of the Fe-6.5%Si alloy tested at 400 ℃ (Inset in Fig.8a shows the macrophotograph of original and tested specimens)
Fig.9  Fracture morphologies of the Fe-6.5%Si alloy at 400 ℃ (Insets in Figs.9b~d are the local magnifications)

(a) Ce-0 (b) Ce-62 (c) Ce-150 (d) Ce-210 (e) Ce-260 (f) Ce-790

Fig.10  Schematic of microscopic characteristics and warm tensile ductility in the Fe-6.5%Si alloy with different Ce contents
[1] Arai K I, Ishiyama K.Recent developments of new soft magnetic materials[J]. J. Magn. Magn. Mater., 1994, 133: 233
[2] Li H, Liang Y F, Yang W, et al.Disordering induced work softening of Fe-6.5wt% Si alloy during warm deformation[J]. Mater. Sci. Eng., 2015, A628: 262
[3] Okamoto H.Desk Handbook: Phase Diagrams for Binary Alloys[M]. Materials Park, OH, USA: ASM International, 2000: 1
[4] Shin J S, Bae J S, Kim H J, et al.Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%) Si alloys[J]. Mater. Sci. Eng., 2005, A407: 282
[5] Lin J P, Ye F, Chen G L, et al.Fabrication technology, microstructures and properties of Fe-6.5wt% Si alloy sheets by cold rolling[J]. Fron. Sci., 2007, (2): 13(林均品, 叶丰, 陈国良等. 6.5 wt% Si高硅钢冷轧薄板制备工艺, 结构和性能[J]. 前沿科学, 2007, (2): 13)
[6] Wang X L, Li H Z, Liu Z Y, et al.Effect of cooling rate on bending behavior of 6.5wt.% Si electrical steel thin sheets fabricated by strip casting and rolling[J]. Mater. Charact., 2016, 111: 67
[7] Liang Y F, Ye F, Lin J P, et al.Effect of heat treatment on mechanical properties of heavily cold-rolled Fe-6.5wt%Si alloy sheet[J]. Sci. China Technol. Sci., 2010, 53: 1008
[8] Zhang Z H, Wang W P, Fu H D, et al.Effect of quench cooling rate on residual stress, microstructure and mechanical property of an Fe-6.5Si alloy[J]. Mater. Sci. Eng., 2011, A530: 519
[9] Mo Y K, Zhang Z H, Fu H D, et al.Effects of deformation temperature on the microstructure, ordering and mechanical properties of Fe-6.5wt% Si alloy with columnar grains[J]. Mater. Sci. Eng., 2014, A594: 111
[10] Xie J X, Fu H D, Zhang Z H, et al.Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt.%Si alloy at intermediate temperatures[J]. Intermetallics, 2012, 23: 20
[11] Fu H D, Zhang Z H, Pan H J, et al.Warm/cold rolling processes for producing Fe-6.5wt% Si electrical steel with columnar grains[J]. Int. J. Miner. Metall. Mater., 2013, 20: 535
[12] Kim K N, Pan L M, Lin J P, et al.The effect of boron content on the processing for Fe-6.5wt% Si electrical steel sheets[J]. J. Magn. Magn. Mater., 2004, 277: 331
[13] Chen W S, Liu J, Cheng Z Y, et al.Effect of chromium on microstructure, ordered phase and magnetic properties of Fe-6.5wt% Si alloy[J]. Mater. Today: Proc., 2015, 2(Suppl. 2): S314
[14] Yang K, Liang Y F, Ye F, et al.Texture evolution of Nb micro-alloyed Fe14Si2 high silicon steel during warm rolling[J]. Acta Metall. Sin., 2013, 49: 1411(杨琨, 梁永锋, 叶丰等. Nb微合金化Fe14Si2高硅钢温轧板织构演变规律[J]. 金属学报, 2013, 49: 1411)
[15] Narita K, Enokizono M.Effect of nickel and manganese addition on ductility and magnetic properties of 6.5% silicon-iron alloy[J]. IEEE Trans. Magn., 1978, 14: 258
[16] Shao Y Z, Gu S R, Chen N P.Boron distribution in bccintermetallic compound Fe3(Si, Al) and improvement on its brittleness[J]. Acta. Metall. Sin., 1991, 27(2): 27(邵元智, 顾守仁, 陈南平. 硼在体心立方结构Fe3(SiAl)中的分布及其对脆性的改善[J]. 金属学报, 1991, 27(2): 27)
[17] Li H Z, Liu H T, Wang X L, et al.Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5wt% Si alloy[J]. Mater. Lett., 2016, 165: 5
[18] Li H Z, Liu H T, Liu Z Y, et al.Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5wt.% Si electrical steel doped with cerium[J]. Mater. Charact., 2015, 103: 101
[19] Yu X, Zhang Z H, Xie J X.Effects of rare earth elements doping on ordered structures and ductility improvement of Fe-6.5wt% Si alloy[J]. Mater. Lett., 2016, 184: 294
[20] Waudby P E.Rare earth additions to steel[J]. Int. Met. Rev., 1978, 23: 74
[21] Song M M, Song B, Xin W B, et al.Effects of rare earth addition on microstructure of C-Mn steel[J]. Ironmak. Steelmak., 2015, 42: 594
[22] Lin Q, Ye W, Li S L.Rare earth dissolved in solid solution of steel and its effect on micro structure[J]. J. Chin. Rare Earth Soc., 1989, 7(2): 54(林勤, 叶文, 李栓禄. 钢中稀土固溶规律及作用研究[J]. 中国稀土学报, 1989, 7(2): 54)
[23] Li Q L, Xia T D, Lan Y F, et al.Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al-20%Si alloy[J]. J. Alloys Compd., 2013, 562: 25
[24] Liang Y C, Guo J T, Sheng L Y, et al.Effects of rare earth element Gd on the microstructure and mechanical properties of NiAl-Cr(Mo)-Hf eutectic alloy[J]. Acta Metall. Sin., 2010, 46: 528(梁永纯, 郭建亭, 盛立远等. 稀土元素Gd对NiAl-Cr (Mo)-Hf共晶合金的组织和压缩性能的影响[J]. 金属学报, 2010, 46: 528)
[25] Narita K, Enokizono M.Effect of ordering on magnetic properties of 6.5-percent silicon-iron alloy[J]. IEEE Trans. Magn., 1979, 15: 911
[26] Jang P, Lee B, Choi G.Order-disorder transition and magnetic properties of Fe-6.5Si alloy powder cores[J]. Phys. Status Solidi, 2007, 204A: 4108
[27] Liu G L, Li R D.Ordering and interaction of Fe and RE atoms on grain boundaries in ZA27 alloys[J]. Acta Phys. Sin., 2006, 55: 776(刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用[J]. 物理学报, 2006, 55: 776)
[28] Zhang L, Xue S B, Gao L L, et al.Effects of trace amount addition of rare earth on properties and microstructure of Sn-Ag-Cu alloys[J]. J. Mater. Sci.: Mater. Electron., 2009, 20: 1193
[29] Raviprasad K, Chattopadhyay K.The influence of critical points and structure and microstructural evolution in iron rich Fe-Si alloys[J]. Acta Metall. Mater., 1993, 41: 609
[30] Mo Y K, Zhang Z H, Xie J X, et al.Effects of recrystallization on the microstructure, ordering and mechanical properties of cold-rolled high silicon electrical steel sheet[J]. Acta Metall. Sin., 2016, 52: 1363(莫远科, 张志豪, 谢建新等. 再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响[J]. 金属学报, 2016, 52: 1363)
[1] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[2] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[3] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[4] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[5] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[6] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[7] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[8] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[9] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[10] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[11] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[12] Gaowu QIN, Hongbo XIE, Hucheng PAN, Yuping REN. A New Class of Ordered Structure Between Crystals and Quasicrystals[J]. 金属学报, 2018, 54(11): 1490-1502.
[13] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
[14] Li ZHOU,Chao CUI,Qing JIA,Yingshi MA. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J]. 金属学报, 2017, 53(4): 505-512.
[15] Kai WANG,Liu LIU,Tingdong XU,Xuedong DONG. Mechanism Study on Hot Ductility of 2.25Cr1Mo Alloy Based on Non-Equilibrium Grain-Boundary Segregation[J]. 金属学报, 2017, 53(3): 345-350.
No Suggested Reading articles found!