Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 251-256    DOI: 10.3724/SP.J.1037.2010.00393
论文 Current Issue | Archive | Adv Search |
Ti-Mo FERRITE MATRIX MICRO-ALLOY STEEL WITH NANOMETER-SIZED PRECIPITATES
DUAN Xiugang, CAI Qingwu, WU Huibin
Research Institute of Metallurgical Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

DUAN Xiugang CAI Qingwu WU Huibin. Ti-Mo FERRITE MATRIX MICRO-ALLOY STEEL WITH NANOMETER-SIZED PRECIPITATES. Acta Metall Sin, 2011, 47(2): 251-256.

Download:  PDF(1268KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The morphology, size, distribution and types of precipitate particles were studied by using OM, SEM, TEM, EDS and SAEDP for Ti-Mo low-carbon ferrite matrix micro-alloy steel with four different titanium contents. Experimental results indicated that there were two kinds of particles with obvious different sizes in ferrite matrix, one was nanometer sized particles, which were smaller than 10 nm, the composition of these particles was compound carbonitride of Ti and Mo. These particles precipitated in chains or dispersed in the interior of grains. Dislocation nodes and the dislocation network were preferential nucleation sites for these particles. Another kind of particles was titanium carbonitride larger particles with a “cap” and few in number in ferrite matrix. Their size was about 200 to 300 nm and morphology was square. Tensile experimental results at room temperature and high temperatures showed that ferrite matrix micro-alloy steel with nanometer sized had good mechanical properties. No.4 steel had good performance at 600 ℃ with a yield strength of about\linebreak 300 MPa.
Key words:  Ti-Mo micro-alloy steel      nanometer sized precipitate      morphology      composition      precipitation law      high temperature property     
Received:  10 August 2010     
ZTFLH: 

TG142.4

 
Fund: 

Supported by “Eleventh Five-Year” National Science and Technology Support Program Funded Projects (No.2006BE03A0)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00393     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/251

[1] Cao J C. PhD Thesis, Kunming University of Science and Technology, 2006

(曹建春. 昆明理工大学博士学位论文, 2006)

[2] Gladman T. Mater Sci Technol, 1999; 15: 30

[3] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 15

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 15)

[4] Andrade H L, Akben M G, Jonas J J. Metall Trans, 1983; 14A: 1967

[5] Lee W B, Hong S G, Park C G, et al. Metall Mater Trans, 2002; 33A: 1689

[6] Lee W B, Hong S G, Park C G. Scr Mater, 2000; 43: 319

[7] Yang S W, He X L, Chen M D. Mater Sci Technol, 1994; 12(2): 49

(杨善武, 贺信莱, 陈梦滴. 材料科学与工程, 1994; 12(2): 49)

[8] Wang Z D, Qu J B, Liu X H. Acta Metall Sin, 2000; 36: 618

(王昭东, 曲锦波, 刘相华. 金属学报, 2000; 36: 618)

[9] He X L, Shang C J, Yang S W. High Performance Low Carbon Bainite Steel/Ingredients, Process, Microstructure, Properties and Application. Beijing: Metallurgical Industry Press, 2008: 152

(贺信来, 尚成嘉, 杨善武. 高性能低碳贝氏体钢--成分、工艺、组织、性能与应用. 北京, 冶金工业出版社, 2008: 152)

[10] Craven A J, He K, Garvie L A J, Baker T N. Acta Mater, 2000; 48: 3857

[11] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163

[12] Villars P, Calvert L D. Metals Park(USA OH): ASM, 1985: 52

[13] Yu W. PhD Thesis, University of Science and Technology Beijing, 2008

(余伟. 北京科技大学博士学位论文, 2008)

[14] DeArdo A J. Mater Sci Forum, 1998; 284–286: 15

[15] FunakawaY, Shiozaki T, Tomita K. ISIJ Int, 2004; 44, 1945

[16] Cao J C, Yong Q L, Liu Q Y. Trans Mater Heat Treat, 2006; 27(5): 51

(曹建春, 雍岐龙, 刘清友. 材料热处理学报, 2006; 27(5): 51)

[17] Bacroix B, Akben M G, Jonas J J. Warrendale: A Publication of the Metallurgy Society of AIME, 1982: 293

[18] Lee W B, Hong S G, Park C G, Kim K H, Park S H. Scr Mater, 2000; 43: 319

[19] Akben M G, Baeroix B, Jonas J J. Acta Metall, 1983; 31: 161

[20] Maruyama N, Uemori R, Suriyama M. Mater Sci Eng, 1998; A250: 2
[1] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[2] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[3] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[4] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[5] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[6] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[7] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[8] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[9] WANG Cong, ZHANG Jin. Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview[J]. 金属学报, 2021, 57(9): 1126-1140.
[10] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[11] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[12] SUN Xiaofeng, SONG Wei, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Research and Development in Materials and Processes of Superalloy Fabricated by Laser Additive Manufacturing[J]. 金属学报, 2021, 57(11): 1471-1483.
[13] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[14] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[15] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
No Suggested Reading articles found!