Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 400-410    DOI: 10.11900/0412.1961.2019.00371
Current Issue | Archive | Adv Search |
M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility
WANG Cunyu1,CHANG Ying2(),ZHOU Fengluan1,CAO Wenquan1,DONG Han1,3,WENG Yuqing1
1.Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2.School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
3.School of Material Science and Engineering, Shanghai University, Shanghai 200444, China
Download:  HTML  PDF(6927KB) 
Export:  BibTeX | EndNote (RIS)      

An important topic is the achievement of high strength and high plasticity for the development of automotive steels. Present article reviews the M3 (multiphase, metastable and multiscale) microstructure and property control theory and technology of high-strength and high-ductility third-generation automotive steels, as well as new challenges. M3 microstructure and property-microstructure control theory provide theoretical support for the development of steels with high strength and high plasticity. Transformation induced plasticity (TRIP) effect of metastable austenite has a significant influence on properties and microstructure of steels. On the one hand, it can enhance the work-hardening rate and thereby improve strength and plasticity of steels. On the other hand, it causes some new problems, such as the increase of the shear edge crack sensitivity, the decrease of hydrogen induced delayed fracture properties, and more complex transformation behavior of metastable austenite under cyclic loading. At present, the quality consistency and basic research on application are insufficient for the high-strength and high-plasticity steels with metastable austenite. As a widely-applied product, the automotive steels need be evaluated in microstructure evolution and properties from the whole chain including composition design, microstructure control, cutting process, forming process, joining process and service performance. The evaluation results will provide the basis for the improvement of microstructure control theory and technology. Full consideration will be given in the technical applicability and cost of products.

Key words:  automotive steel      strength      ductility      metastable austenite      medium manganese steel      Q&P steel     
Received:  04 November 2019     
ZTFLH:  TG142.1,TG161  
Fund: National Key Research and Development Program of China(2017YFB0304401);National Key Research and Development Program of China(2016YFB0101605);National Natural Science Foundation of China(51971050);National Natural Science Foundation of China(51571048);National Basic Research Program of China(2010CB630803)
Corresponding Authors:  Ying CHANG     E-mail:

Cite this article: 

WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility. Acta Metall Sin, 2020, 56(4): 400-410.

URL:     OR

Fig.1  Strength grades of industrial advanced high-strength steels (a) and total elongation of 980 MPa series plastic automotive steels (b) (PHS—press hardening steel, MS—martensite steel, TWIP—twinning induced plasticity, MMnS—medium manganese steel, Q&P—quenching and partitioning, CP—complex phase, DP—dual phase, DH—dual phase high formability)
Fig.2  The third-generation automotive steels[2] (IF—interstitial-free, HS—high strength, BH—bake hardening, TRIP—transformation induced plasticity, HSLA—high strength low alloy, FB—ferrite bainite, AHSS—advanced high strength steel)Color online
Fig.3  M3 (multiphase, metastable, multiscale) microstructure control design, positive/reverse phase transformation process and performance control principle (A3—temperature of polymorphic transformation γ?α in Fe-C phase diagram, A1—temperature of eutectoid reaction in Fe-C phase diagram, Ms—martensite transformation start temperature, TMCP—thermo mechanical control process)
Fig.4  Relation between metastable austenite fraction and strength-ductility balance (Rm—tensile strength, δ—elongation) (a)[41] and effect of austenite fraction on work-hardening behavior of medium-Mn steel (dσ/dε—work-hardening rate) (b)
Fig.5  Typical microstructures of the third-generation automotive steel(a) hot-rolled medium Mn steel(b) cold-rolled medium Mn steel(c) QP980 steel (M/A—martensite/austenite)
Fig.6  Transformation of metastable austenite of 0.13C-5Mn steel under different stress-cycle conditions[71](a) 435 MPa, 1000 cyc (b) 435 MPa, 4000 cyc (c) 600 MPa, 20 cyc (d) 600 MPa, 100 cyc
Fig.7  Effect of metastable austenite fraction on delayed fracture properties[72]
Fig.8  Effects of metastable austenite in the rollover zone (a), burnish zone (b) and fracture zone (c) on work-hardening behavior of sheared edge[74]
[1] Society of Automotive Engineers of China, China Auto Lightweight Technology Innovation Strategic Alliance, Research Center of FAW Group Co., Ltd. China Automotive Lightweight Development—Strategy and Path [M]. Beijing: Beijing Institute of Technology Press, 2015: 1
[1] 中国汽车工程学会, 中国汽车轻量化技术创新战略联盟, 中国第一汽车股份有限公司技术中心. 中国汽车轻量化发展: 战略与路径 [M]. 北京: 北京理工大学出版社, 2015: 1
[2] World Steel Association, World Automobile Steel Union, translated by Baosteel Co., Ltd. Advanced High-strength Steels Application Guidelines [M]. Beijing: Metallurgical Industry Press, 2018: 1
[2] 世界钢铁协会, 世界汽车用钢联盟著, 宝山钢铁股份有限公司译. 先进高强度钢应用指南 [M]. 北京: 冶金工业出版社, 2018: 1
[3] Strategic Advisory Committee of Energy Saving and New Energy Vehicle Technology Roadmap, Society of Automotive Engineers of China. Technology Roadmap for Energy Saving and New Energy Vehicle [M]. Beijing: Mechanical Industry Press, 2016: 1
[3] 节能与新能源汽车技术路线图战略咨询委员会, 中国汽车工程学会. 节能与新能源汽车技术路线图 [M]. 北京: 机械工业出版社, 2016: 1
[4] Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels [J]. Iron Steel, 2019, 54(2): 1
[4] 王存宇, 杨 洁, 常 颖等. 先进高强度汽车钢的发展趋势与挑战 [J]. 钢铁, 2019, 54(2): 1
[5] Wang C Y, Cao W Q, Dong H. The third generation automobile steel of medium manganese and its advantages [A]. Proceedings of the 11th CSM Steel Congress—S07. Automobile Steel [C]. Beijing: The Chinese Society of Metals, 2017: 1648
[5] 王存宇, 曹文全, 董 瀚. 中锰第三代汽车钢及其先进性 [A]. 第十一届中国钢铁年会论文集——S07.汽车钢 [C]. 北京: 中国金属学会, 2017: 1648
[6] Heimbuch R. Overview: Auto/Steel partnership [EB/OL].
[7] Hall E O. The deformation and ageing of mild steel: Ⅲ Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
[8] Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
[9] Petch N J. The ductile-brittle transition in the fracture of α-iron: I [J]. Philos. Mag., 1958, 3: 1089
[10] Cottrell A H. Theory of brittle fracture in steel and similar metals [J]. Trans. Metall. Soc. Am. Inst. Min. Metall. Eng., 1958, 212: 192
[11] Takaki S. Ultra grain refining of iron and the mechanism of grain refining strengthening [A]. Proceedings of Workshop on New Generation Steel' 2001 [C]. Beijing: The Chinese Society of Metals, 2001: 92
[12] Takaki S, Toknnaga Y. Innovation stainless steel [A]. Proceeding of 1st European Stainless Steel Conference [C]. W. Nicodemi ec., Florence: Associazionc Italiana di Mctallurgic, 1993: 327
[13] Dong H, Sun X J, Hui W J, et al. Grain refinement in steels and the application trials in China [J]. ISIJ Int., 2008, 48: 1126
[14] Weng Y Q. Ultra-Fine Grained Steels [M]. Berlin, Heidelberg: Springer, 2009: 1
[15] Priestner R, Ali L. Strain induced transformation in C-Mn steel during single pass rolling [J]. Mater. Sci. Technol., 1993, 9: 135
[16] Matsumura Y, Yada H. Evolution of ultrafine-grained ferrite in hot successive deformation [J]. Trans. ISIJ, 1987, 27: 492
[17] Weng Y Q. Development of ultrafine grained steel in China [A]. Proceedings of International Session of Workshop on New Generation Steel' 2001 [C]. Beijing: The Chinese Society of Metals, 2001: 1
[18] Wang R Z, Lei T C. Dynamic recrystallization of ferrite in a low carbon steel during hot rolling in the (F+A) two-phase range [J]. Scr. Metall. Mater., 1994, 31: 1193
[19] Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles [J]. Scr. Mater., 2005, 52: 1075
[20] Calcagnotto M, Ponge D, Raabe D. Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels [J]. Mater. Sci. Eng., 2010, A527: 7832
[21] Papa R M, Sarma V S, Sankaran S. Microstructure and mechanical properties of V-Nb microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing [J]. Metall. Mater. Trans., 2017, 48A: 1176
[22] Sun R M, Xu W H, Wang C Y, et al. Work hardening behavior of ultrafine grained duplex medium-Mn steels processed by ART-annealing [J]. Steel Res. Int., 2012, 83: 316
[23] Lan H F, Liu X H, Du L X. Enhanced mechanical stability of ultrafine grained steel through intercritical annealing cold rolled martensite [J]. Acta Metall. Sin. (Engl. Lett., 2012, 25: 443
[24] Liu J, Zhu G H. Model of the effect of grain size on plasticity in ultra-fine grain size steels [J]. Acta Metall. Sin., 2015, 51: 777
[24] 刘 觐, 朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型 [J]. 金属学报, 2015, 51: 777
[25] Weng Y Q. Ultrafine Grain Steel—Microstructure Refinement Theory and Control Technology of Steel [M]. Beijing: Metallurgical Industry Press, 2003: 1
[25] 翁宇庆. 超细晶钢——钢的组织细化理论与控制技术 [M]. 北京: 冶金工业出版社, 2003: 1
[26] Saeidi N, Ashrafizadeh F, Niroumand B. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior [J]. Mater. Sci. Eng., 2014, A599: 145
[27] Ma M T, Wu B R. Dual Phase Steels—Physical and Mechanical Metallurgy [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2009: 1
[27] 马鸣图, 吴宝荣. 双相钢——物理和力学冶金 [M]. 第2版. 北京: 冶金工业出版社, 2009: 1
[28] Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility on high-strength steel [J]. Trans. Appl. Struct. Mech., 1967, 60: 252
[29] Wang X D, Wang L, Rong Y H. Current research condition and development of TRIP steel [J]. Heat Treat., 2008, 23(6): 8
[29] 王晓东, 王 利, 戎咏华. TRIP钢研究的现状与发展 [J]. 热处理, 2008, 23(6): 8
[30] Bleck W, Guo X F, Ma Y. The TRIP effect and its application in cold formable sheet steels [J]. Steel Res. Int., 2017, 88: 1700218
[31] Dong H, Wang M Q, Weng Y Q. Performance improvement of steels through M3 structure control [J]. Iron Steel, 2010, 45(7): 1
[31] 董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术 [J]. 钢铁, 2010, 45(7): 1
[32] Xie Z J, Ren Y Q, Zhou W H, et al. Stability of retained austenite in multi-phase microstructure during austempering and its effect on the ductility of a low carbon steel [J]. Mater. Sci. Eng., 2014, A603: 69
[33] Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering [J]. Mater. Sci. Eng., 2014, A618: 112
[34] Weng Y Q, Dong H, Gan Y. Advanced Steels: The Recent Scenario in Steel Science and Technology [M]. Berlin, Heidelberg: Springer, 2011: 209
[35] Dong H. High performance steels: Initiative and practice [J]. Sci. China Technol. Sci., 2012, 55: 1774
[36] Wang C Y, Chang Y, Li X D, et al. Relation of martensite-retained austenite and its effect on microstructure and mechanical properties of the quenched and partitioned steels [J]. Sci. China Technol. Sci., 2016, 59: 832
[37] Yang F, Luo H W, Hu C D, et al. Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel [J]. Mater. Sci. Eng., 2017, A685: 115
[38] Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, A review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
[39] Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
[40] Wang C Y, Chang Y, Yang J, et al. Work hardening behavior and stability of retained austenite for quenched and partitioned steels [J]. J. Iron Steel Res. Int., 2016, 23: 130
[41] Wang C Y. Investigation on 30 GPa·% grade ultrahigh-strength martensitic-austenitic steels [D]. Beijing: Central Iron and Steel Research Institute, 2010
[41] 王存宇. 30 GPa·%级超高强度马奥组织钢的研究 [D]. 北京: 钢铁研究总院, 2010
[42] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Metall., 2003, 51: 2611
[43] Edmonds D V, He F C, Rizzo K, et al. Quenching and Partitioning Martensite—A novel steel heat treatment [J]. Mater. Sci. Eng., 2006, A438-440: 25
[44] Hsu T Y. New processes for steel heat treatment [J]. Heat Treat., 2007, 22(1): 1
[44] 徐祖耀. 钢热处理的新工艺 [J]. 热处理, 2007, 22(1): 1
[45] Matlock D K, Br?utigam V E, Speer J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel [J]. Mater. Sci. Forum, 2003, 426-432: 1089
[46] Rizzo F, Martins A R, Speer J G, et al. Quenching and partitioning of Ni-added high strength steels [J]. Mater. Sci. Forum, 2006, 539-543: 4476
[47] Zhong N, Wang X D, Huang B X, et al. Microstructures and mechanical property of quenched and partitioned Fe-C-Mn-Si steel [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels [C]. Gyeongju, Korea: Institute Metals and Materials, 2006: 885
[48] De Cooman B C, Speer J G. Microstructure-properties relationships in quench and partition (Q&P) steel implications for automotive anti-intrusion applications [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels [C]. Gyeongju, Korea: Institute Metals and Materials, 2006: 798
[49] Jia X S, Zuo X W, Chen N L, et al. Microstructure and properties of Q235 steel treated by novel Q-P-T process [J]. Acta Metall. Sin., 2013, 49: 35
[49] 贾晓帅, 左训伟, 陈乃录等. 经新型Q-P-T工艺处理后Q235钢的组织与性能 [J]. 金属学报, 2013, 49: 35
[50] Gui X L, Zhang B X, Gao G H, et al. Fatigue behavior of bainite/martensite multiphase high strength steel treated by quenching-partitioning-tempering process [J]. Acta Metall. Sin., 2016, 52: 1036
[50] 桂晓露, 张宝祥, 高古辉等. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究 [J]. 金属学报, 2016, 52: 1036
[51] Xu Y S, Gong Y, Du H, et al. A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel [J]. Int. J. Lightweight Mater. Manuf., 2019, DOI: 10.1016/j.ijlmm.2019.11.003
[52] Cai H L, Chen P, Oh J K, et al. Quenching and flash-partitioning enables austenite stabilization during press-hardening processing [J]. Scr. Mater., 2020, 178: 77
[53] Wang C Y, Chang Y, Yang J, et al. The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel [J]. Acta Metall. Sin., 2015, 51: 913
[53] 王存宇, 常 颖, 杨 洁等. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响 [J]. 金属学报, 2015, 51: 913
[54] Zhu Y F, Wang F Y, Zhou H H, et al. Stepping-quenching-partitioning treatment of 20SiMn2MoVA steel and effects of carbon and carbide forming elements [J]. Sci. China Technol. Sci., 2012, 55: 1838
[55] Zhong N, Wang X D, Rong Y H, et al. Interface migration between martensite and austenite during quenching and partitioning (Q&P) process [J]. J. Mater. Sci. Technol., 2006, 22: 751
[56] Yang F, Luo H W, Pu E X, et al. On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity [J]. Int. J. Plast., 2018, 103: 188
[57] Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
[58] Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
[59] Wang X G, Wang L, Huang M X. In-situ evaluation of Lüders band associated with martensitic transformation in a medium Mn transformation-induced plasticity steel [J]. Mater. Sci. Eng., 2016, A674: 59
[60] Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
[61] Wang C, Shi J, Wang C Y, et al. Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing [J]. ISIJ Int., 2011, 51: 651
[62] Zhou F L, Wang C Y, Han S, et al. Study on microstructure, mechanical properties and forming limit curve of ART-annealed medium manganese steel [J]. J. Iron Steel Res., 2019, 31: 394
[62] 周峰峦, 王存宇, 韩 硕等. 逆相变退火中锰钢的组织性能与成形极限 [J]. 钢铁研究学报, 2019, 31: 394
[63] Zhang Y J, Hui W J, Zhao X L, et al. Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel (0.1C-5Mn) [J]. Eng. Fail. Anal., 2019, 97: 605
[64] Zhao X L, Zhang Y J, Shao C W, et al. Hydrogen embrittlement of intercritically annealed cold-rolled 0.1C-5Mn steel [J]. Acta Metall. Sin., 2018, 54: 1031
[64] 赵晓丽, 张永健, 邵成伟等. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性 [J]. 金属学报, 2018, 54: 1031
[65] Li L, Gao Y, Shi W, et al. Martensite transformation and its control in DP, TRIP and TWIP steels [J]. J. Iron Steel Res. Int., 2011, 18: 200
[66] Chang Y, Wang C Y, Zhao K M, et al. An introduction to medium-Mn steel: Metallurgy, mechanical properties and warm stamping process [J]. Mater. Des., 2016, 94: 424
[67] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
[68] Zheng G J, Chang Y, Fan Z Y, et al. Study of thermal forming limit of medium-Mn steel based on finite element analysis and experiments [J]. Int. J. Adv. Manuf. Technol., 2018, 94: 133
[69] Chang Y, Wang M H, Wang N, et al. Investigation of forming process of the third-generation automotive medium-Mn steel part with large-fractioned metastable austenite for high formability [J]. Mater. Sci. Eng., 2018, A721: 179
[70] Chang Y, Han S, Li X D, et al. Effect of shearing clearance on formability of sheared edge of the third-generation automotive medium-Mn steel with metastable austenite [J]. J. Mater. Process. Technol., 2018, 259: 216
[71] Wang C Y. Investigation on key technology of the third generation automobile steel [R]. Taiyuan: TISCO, 2017
[71] 王存宇. 第三代汽车钢工业生产关键技术研究 [R]. 太原: 太原钢铁(集团)有限公司博士后报告, 2017
[72] Zhang Y J. Study on hydrogen delayed fracture behaviour of ultra-high strength steel sheets [D]. Beijing: Central Iron and Steel Research Institute, 2013
[72] 张永健. 超高强度薄板钢的氢致延迟断裂行为研究 [D]. 北京: 钢铁研究总院, 2013
[73] Zhao X L, Zhang Y J, Huang H T, et al. Effect of tempering treatment on hydrogen embrittlement sensitivity of cold-rolled and intercritically annealed medium-Mn 0.1C-5Mn steel [J]. Trans. Mater. Heat Treat., 2018, 39(10): 36
[73] 赵晓丽, 张永健, 黄海涛等. 回火对冷轧后退火处理中锰钢0.1C-5Mn氢脆敏感性的影响 [J]. 材料热处理学报, 2018, 39(10): 36
[74] Han S. Investigations on sheared edge crack susceptibility of the third generation automobile steels [D]. Dalian: Dalian University of Technology, 2017
[74] 韩 硕. 第三代汽车钢剪切边裂纹敏感性研究 [D]. 大连: 大连理工大学, 2017
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[3] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[4] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[5] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[6] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[7] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[8] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[9] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[10] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[11] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[12] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[13] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[14] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[15] Zhengyan ZHANG,Feng CHAI,Xiaobing LUO,Gang CHEN,Caifu YANG,Hang SU. The Strengthening Mechanism of Cu Bearing High Strength Steel As-Quenched and Tempered and Cu Precipitation Behavior in Steel[J]. 金属学报, 2019, 55(6): 783-791.
No Suggested Reading articles found!