Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1215-1222    DOI: 10.3724/SP.J.1037.2010.00265
论文 Current Issue | Archive | Adv Search |
DYNAMIC RECRYSTALLIZATION AND PRECIPITATION BEHAVIORS OF A KIND OF LOW CARBON V–MICROALLYED STEEL
CHEN Liqing 1, ZHAO Yang 1, XU Xiangqiu 2, LIU Xianghua 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. R & D Center, FAW Group Corporation, Changchun 130011
Cite this article: 

CHEN Liqing ZHAO Yang XU Xiangqiu LIU Xianghua. DYNAMIC RECRYSTALLIZATION AND PRECIPITATION BEHAVIORS OF A KIND OF LOW CARBON V–MICROALLYED STEEL. Acta Metall Sin, 2010, 46(10): 1215-1222.

Download:  PDF(1855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By using thermo–mechanical simulator, OM and TEM, the dynamic recrystallization (DRX) and precipitation behaviors of a kind of low carbon V–microalloyed steel have been investigated at temperatures ranging from 900 to 1050℃ and strain rates from 0.01 to 10 s−1. The activation energy (Qdef ) for hot deformation of this kind of V–microalloyed steel was calculated to be 341.97 kJ/mol by regression analysis, while the apparent stress exponent (n) was calculated to be 4.24. The equation describing the hot working process was also obtained. The critical strain for DRX was accurately determined based on the P–J method and high order polynomial fitting between strain hardening rate and true stress, and mathematical models of critical strain and peak strain versus Z parameter were deduced. The dynamic precipitation behavior of V(C, N) particles at low strain rate was further investigated. The results show that with increasing the strain, the average size of V(C, N) particles increases and the size distribution of the precipitates become wide. The calculations of the driving force for recrystallization and pinning force show that once the dynamic recrystallization take place, the dynamic precipitation could not prevent dynamic recrystallization from occurring.
Key words:  V–microalloyed steel      dynamic recrystallization      activation energy      critical strain      dynamic precipitation     
Received:  03 June 2010     
Fund: 

Supported by Program for New Century Excellent Talents in University (No.NCET–06–0285) and Foundation for Innovative Research Team, the Education Department, Liaoning Province

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00265     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1215

[1] Poliak E I, Jonas J J. Acta mater, 1996; 44: 127 [2] Hansen S S, Vander Sande J B, Cohen M. Metall Mater Trans, 1980; 11A: 387 [3] Shanmugum S, Misra R D K, Mannering T, Panda D, Jansto S G. Mater Sci Eng, 2006; 437: 436 [4] Miyamoto G, Shinyoshi T, Yamaguchi J, Furuhara T, Maki T, Uemori U. Scr Mater, 2003; 48: 371 [5] Misra R D K, Weatherly G C, Hartmann J E, Boucek A J. Mater Sci Technol, 2001; 17: 1119 [6] Medina S F, Gomez M, Rancel L. Acta Mater, 2008; 58: 1000 [7] Medina S F, Hernandez C A. Acta Mater, 1996; 44: 165 [8] Ma L Q, Yuan X Q, Liu Z Y, Zhang P J, Jiao S H, Wu D, Wang G D. J Iron Steel Res, 2006; 18: 47 (马立强, 袁向前, 刘振宇, 焦四海, 吴 迪, 王国栋. 钢铁研究学报, 2006; 18: 47) [9] Fernandez A I, Uranga P, Lopez B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 368 [10] Arribas M, Lopez B, Rodriguez-Ibabe J M. Mater Sci Eng, 2008; A485: 384 [11] Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 734 [12] Karhausen K, Kopp R. Metal working, 1992; 63: 253 [13] Medina S F, Hernandez C A. Acta Mater, 1996; 44: 142 [14] Cao J R, Liu Z D, Cheng S L, Yang G, Xie J X. Acta Metall Sin, 2007; 43: 37 (曹金荣, 刘正东, 程世长, 杨 钢, 谢建新. 金属学报, 2007; 43: 37) [15] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 50 [16] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 686 [17] Akben M G, Weiss I, Jonas J J. Acta metall, 1981; 29: 114 [18] Lee K J. Scr Mater, 1999; 40: 840 [19] Tiitto K, Fitzsimons G, DeArdo A J. Acta metall, 1983; 31:1167 [20] Roberts W, Ahlblom B. Acta metall, 1978; 26
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[8] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[9] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[10] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[11] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[12] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[13] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[14] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[15] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
No Suggested Reading articles found!