Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1223-1229    DOI: 10.3724/SP.J.1037.2010.00308
论文 Current Issue | Archive | Adv Search |
EFFECTS OF TEMPERATURE GRADIENT ON LAMEL-LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl–BASED ALLOY
XIAO Zhixia, ZHENG Lijing, YANG Lili, YAN Jie, ZHANG Hu
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and
Engineering, Beihang University, Beijing, 100191
Cite this article: 

XIAO Zhixia ZHENG Lijing YANG Lili YAN Jie ZHANG Hu. EFFECTS OF TEMPERATURE GRADIENT ON LAMEL-LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl–BASED ALLOY. Acta Metall Sin, 2010, 46(10): 1223-1229.

Download:  PDF(2362KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Directional solidification experiments under heating temperatures of 1580℃ and 1650℃ were performed on Ti–47Al–2Cr–2Nb alloy in order to obtain the evolution of lamellar grains. From microstructural analysis in the mushy zone of directional solidified ingots, β phase was firstly solidified, then α phase was formed through peritectic reaction; α phase depended on the pre–existed β phase on which it nucleated, and only one of the 12 α orientation variants was selected during solid state β→ α transformations. As the average temperature gradient of the mushy zone was increased from 40 K/cm to 160 K/cm, the solidification interface morphologies were changed from columnar dendrite to celluar dendrite. Eliminating the influence of cutting plane to the γ–lamella orientation, it was shown that the columnar lamellar grains with an angle of approximately 74? to growth direction gradually overgrew the ones with the angle of nearly 45? to the growth direction at the withdrawal rate of 1 mm/min and temperature gradient of 40 K/cm. Increasing temperature gradient to 160 K/cm, the grains with the angle of about 74? progressively rejected other with the angle of nearly 90? to the growth direction. Calculation of the β dendrite preferred growth orientation indicated that  β dendrites tend to grow along the <110>β orientation at the present solidification experiments. Increasing temperature gradient, the preferred growth tendency of dendrite became more drastically, other orientations, such as the <001>β directional orientation, could rapidly be replaced.
Key words:  TiAl–based alloy      directional solidification      lamellar orientation      preferred growth     
Received:  28 June 2010     
ZTFLH: 

TG132.32

 
About author:  肖志霞, 女, 1984年生, 博士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00308     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1223

[1] Yamaguchi M, Inui H, Ito K. Acta mater, 2000; 48(1): 307 [2] Dimiduk D M. Mater Sci Eng A, 1999; 263(2): 281 [3] Kim Y W. JOM, 1995, 47(7): 39 [4] Yamaguchi M, Johnson D R, Lee H N, Inui H. Intermetallics, 2000; 8: 511 [5] Kishida K, Johnson D R, Masuda Y, Umeda H, Inui H, Yamaguchi M. Intermetallics, 1998; 6: 679 [6] Johnson D R., Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 2006; 54(4): 1077 [7] Lee H N, Johnson D R, Inui H, Oh M H, Wee D M, Yamaguchi M. Mater Sci Eng A, 2002; 329-331: 19 [8] Takeyama M, Yamamoto Y, Morishima H, Koike K, Chang S Y, Matsuo T. Mater Sci Eng A, 2002; 329-331: 7 [9] Lee H N, Johnson D R, Inui H, Oh M H, Wee D M, Yamaguchi M. Acta Mater, 2000; 48(12): 3221 [10] Jung I S, Oh M H, Park N J, Kumar K S, Wee D M. Met Mater Int, 2007; 13(6): 455 [11] Jung I S, Jang H S, Oh M H, Lee J H, Wee D M. Acta Mater, 2002; 329-331: 13 [12] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M. Mater Sci Eng A, 1997; 239-240: 570 [13] Saari H, Beddoes J, Seo D Y, Zhao L. Intermetallics, 2005; 13(9): 937 [14] Sastry S M L, Lipsitt H A. Metall Trans A, 1977; 8(2): 299 [15] Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science. 3rd ed. Beijing: Tsinghua University Press, 2002: 40 (潘金生, 仝健民, 田民波. 材料科学基础. 第3版. 北京: 清华大学出版社, 2002: 40) [16] Singh A K, Muraleedharan K, Banerjee D. Scripta Mater, 2003; 48: 767 [17] Henry S, Jarry P, Rappaz M. Metall Trans A, 1998; 29: 2807 [18] Henry S, Jarry P, Rappza M. Metall Trans A, 1997; 28: 207 [19] Henry S, Minghetti T, Rappaz M. Acta Mater, 1998; 46(18): 6431 [20] Hu H Q. the Principle of Metal Solidification. 2nd ed. Beijing: China Machine Press, 2000: 119 (胡汉起. 金属凝固原理. 第2版. 北京: 机械工业出版社, 2000: 119) [21] Jiang C B, Zhou S Z, Zhang M C, Wang R, Acta Metall Sin, 1998; 34(2):164 (蒋成保, 周寿增, 张茂才, 王润. 金属学报, 1998: 34(2): 164)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[11] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[12] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[13] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[14] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[15] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
No Suggested Reading articles found!