Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 879-884    DOI: 10.3724/SP.J.1037.2010.00081
论文 Current Issue | Archive | Adv Search |
EFFECT OF WITHDRAWAL RATE ON THE MICROSTRUCTURE OF DIRECTIONAL SOLIDIFIED Ti-47Al-2Cr-2Nb-0.8B ALLOYS
YANG Lili, ZHENG Lijing, XIAO Zhixia, YAN Jie, ZHANG Hu
School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191
Cite this article: 

YANG Lili ZHENG Lijing XIAO Zhixia YAN Jie ZHANG Hu. EFFECT OF WITHDRAWAL RATE ON THE MICROSTRUCTURE OF DIRECTIONAL SOLIDIFIED Ti-47Al-2Cr-2Nb-0.8B ALLOYS. Acta Metall Sin, 2010, 46(7): 879-884.

Download:  PDF(894KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructures, morphology of boride and grain refinement in directional solidified Ti-47Al-2Cr-2Nb-0.8B alloy with different withdrawal rates have been investigated. The results indicated that the primary phase, borides and their precipitation consequence varied with the increasing of withdrawal rates (0.36, 5, 10 and 20 mm/min). The morphologies of borides and grain refinement were affected by the solidification paths due to the different withdrawal rates. The alloy with fine grains and borides were obtained at the withdrawal rate of 5 mm/min.

Key words:  TiAl based alloy      solidification microstructure      grain refinement      boride      solidification rate     
Received:  08 February 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00081     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/879

[1] Loria E A. Intermetallics, 2000; 8: 1339
[2] Lasalmonie A. Intermetallics, 2006; 14: 1123
[3] Lin J P, Chen G L. Mater China, 2009; 28: 31
(林均品, 陈国良. 中国材料进展, 2009; 28: 31)
[4] Godfrey A B. PhD Thesis, University of Birmingham, 1996
[5] Hu D. Intermetallics, 2001; 9: 1037
[6] Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermetallics, 2008; 16: 969
[7] Yamaguchi M, Johnson D R, Inui H. Intermetallics, 2000; 8: 511
[8] Li X Z, Sun T, Peng P, Su Y Q, Guo J J, Fu H Z. Acta Metall Sin, 2009; 11: 1336
(李新中, 孙涛, 彭鹏, 苏彦庆, 郭景杰, 傅恒志. 金属学报, 2009; 11: 1336)
[9] Li X Z, Sun T, Yu C X, Su Y Q, Cao Z Y, Guo J J, Fu H Z. Acta Metall Sin, 2009; 12: 1479
(李新中, 孙涛, 于彩霞, 苏彦庆, 曹智勇, 郭景杰, 傅恒志. 金属学报, 2009; 12: 1479)
[10] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 2006; 54: 1077
[11] Hyman M E, McCullough C, Valencia J J, Levi C G, Mehrabian R. Metall Trans, 1989; 20A: 1847
[12] Larson D J, Liu C T, Miller M K. Intermetallics, 1997; 5: 411
[13] Hu D. Intermetallics, 2001; 9: 1037
[14] Christodoulou J A, Flower H M. Adv Eng Mater, 2000; 2: 631
[15] Johnson D R, Chihara K, Inui H, Yamaguchi M. Acta Mater, 1998; 46: 6529

[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[3] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[4] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[11] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[12] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xiuliang MA, Xiaobing HU. High-Resolution Transmission Electron Microscopic Study of Various Borides Precipitated in Superalloys[J]. 金属学报, 2018, 54(11): 1503-1524.
[15] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
No Suggested Reading articles found!