Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 885-889    DOI: 10.3724/SP.J.1037.2010.00095
论文 Current Issue | Archive | Adv Search |
EFFECT OF ULTRASONIC VIBRATION ON THE DIRECTIONAL SOLIDIFICATION OF SCN-3%ETH MODEL ALLOY
DUAN Mengmeng, CHEN Changle
Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

DUAN Mengmeng CHEN Changle. EFFECT OF ULTRASONIC VIBRATION ON THE DIRECTIONAL SOLIDIFICATION OF SCN-3%ETH MODEL ALLOY. Acta Metall Sin, 2010, 46(7): 885-889.

Download:  PDF(786KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The directional solidification process of SCN-3%ETH model alloy under 27.5 kHz ultrasonic vibration is studied in this paper. The results show that the interface growth is restrained because of the effect of ultrasonic vibration. The radius of curvature on the interface increases as the ultrasonic action time increase. When the ultrasonic vibration is removed from the melt, the refined cellular structure is formed. Because the impact of transient high temperature and pressure generated by the cavitation effect and stirring action of the acoustic streaming and shearing action caused by forced vibration, part of the dendrite tips are fractured. The interface growth rate decreases as the ultrasonic action time increase. Cavitation effects and high-frequency forced vibration caused by ultrasonic vibration in the melt are main reasons for interface growth rate change.

Key words:  ultrasonic vibration      directional solidification      dendrite      the radius of curvature     
Received:  25 February 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50331040 and 60171034)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00095     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/885

[1] Ning S B. Master Thesis, Dalian University of Technology, 2006
(宁韶斌. 大连理工大学硕士学位论文, 2006)
[2] Gao S L, Zhai Q J, Qi F P, Fu Z Y, Gong Y Y. Mater Rev, 2002; 16: 5
(高守雷, 翟启杰, 戚飞鹏, 富知愚, 龚永勇. 材料导报, 2002; 16: 5)
[3] Olmo A, Baena R, Risco R. Int J Refrigeration, 2008; 31: 262
[4] Li T, Lin X, Huang W D. Acta Mater, 2006; 54: 4815
[5] Nakagawa K, Hottot A, Vessot S, Andrieu J. J Chem Eng Process, 2006; 45: 783
[6] Ramirez A, Qian M, Davis B, Wilks T, StJohn D H. Scr Mater, 2008; 59: 19
[7] Taghavi F, Saghafian H, Kharrazi Y H K. Mater Des, 2009; 30: 1604
[8] Li X T, Gao X P, Li T J, Li X M, Jin J Z, Yin G M. Rare Met Mater Eng, 2007; 36: 377
(李新涛, 高学鹏, 李廷举, 李喜孟, 金俊泽, 殷国茂. 稀有金属材料与工程, 2007; 36: 377)
[9] Li J W, Momono T, Fu Y, Jia Z, Tayu Y. Trans Nonferrous Met Soc China, 2007; 17: 691
[10] Chirita G, Stefanescu I, Soares D, Silva F S. Mater Des, 2009; 30: 1575
[11] Liu X B, Osawa Y, Takamori S, Mukai T. Mater Sci Eng, 2008; A487: 120
[12] Gao X P, Li X T, QieXW, Wu Y P, Li X M, Li T J. Acta Phys Sin, 2007; 56: 1188
(高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举. 物理学报, 2007; 56: 1188)
[13] Zhai W, Hong Z Y, Wei B B. Sci China, 2007; 37G: 367
(翟薇, 洪振宇, 魏炳波. 中国科学, 2007; 37G: 367)
[14] Feng W J. Master Thesis, Dalian University of Technology, 2004
(冯伟骏. 大连理工大学硕士学位论文, 2004)
[15] Jackson K A, Hunt J D. Acta Metall, 1965; 13: 1212
[16] Shan B W, Lin X, Wei L, Huang W D. Acta Phys Sin, 2009; 58: 1132
(单博炜, 林 鑫, 魏雷, 黄卫东. 物理学报, 2009; 58: 1132)
[17] Zhai W, Wang N, Wei B B. Acta Phys Sin, 2007; 56: 2353
(翟薇, 王 楠, 魏炳波. 物理学报, 2007; 56: 2353)
[18] Kaya H, Cadirli E, Keslioglu K, Marasli N. J Cryst Growth, 2005; 276: 583
[19] Yoshioka H, Tada Y, Hayashi Y. Acta Mater, 2004; 52: 1515
[20] Huang W D, Lin X, Li T, Wang L L, Inatomi Y. Acta Phys Sin, 2004; 53; 3978
(黄卫东, 林鑫, 李涛, 王琳琳, Inatomi Y. 物理学报, 2004; 53: 3978)
[21] Zhao Z X. Hot Work Technol, 1999; 5: 10
(赵忠兴. 热加工工艺, 1999; 5: 10)
[22] Kuijpers M W A, Eck D V, Kemmere M F, Keurentjes J T F. Science, 2002; 298: 1969
[23] Rayleigh L. Philos Mag, 1917; 34: 94
[24] Campbell J. Int Met Rev, 1981; 26: 71
[25] Neppiras E A, Noltingk B E. Proc Phys Soc, 1951; 64B: 1032
[26] Feng R, Li H M. Sonochemistry and its Applications. Hefei: Anhui Science & Technology Publishing House, 1992: 87
(冯若, 李化茂. 声化学及其应用. 合肥: 安徽科学技术出版社, 1992: 87)
[27] Ma D Y. Acta Acustica, 1992; 17: 241
(马大猷. 声学学报, 1992; 17: 241)
.  ''y, 1992; 17: 241)
[28] Langer J S. M¨uller–Krumbhaar H. J Cryst Growth, 1977; 42: 11

[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[6] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[11] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[12] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[13] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. 金属学报, 2019, 55(12): 1527-1536.
[15] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
No Suggested Reading articles found!