EFFECTS OF ANNEALING TEMPERATURE AND STRESS-STRAIN CYCLE ON SUPERELASTICITY OF Ti-Ni-Cr SHAPE MEMORY ALLOY
WANG Qi, HE Zhirong, WANG Yongshan, YANG Jun
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723003
Cite this article:
WANG Qi HE Zhirong WANG Yongshan YANG Jun. EFFECTS OF ANNEALING TEMPERATURE AND STRESS-STRAIN CYCLE ON SUPERELASTICITY OF Ti-Ni-Cr SHAPE MEMORY ALLOY. Acta Metall Sin, 2010, 46(7): 800-804.
Effects of annealing temperature (θan) and stress-strain cycle on superelasticity (SE) of Ti-50.8Ni-0.3Cr alloy were investigated by tensile test. The results show that with increasing θan, critical stress for stress-induced martensite (σM) descends firstly and then rise. The σM reaches its minimum value (311 MPa) and maximum value (583 MPa) when annealing temperature is 450 and 600℃,\linebreak respectively. When θan=350-590℃, the residual strain (εR) has no obvious change, keeps at a low value all the time. When θan>590℃, the εR rises rapidly. With increasing stress-strain cycle number (N), the alloy annealed at 350 and 590℃ transform from incompletely nonlinear superelasticity to completely nonlinear superelasticity. The alloy annealed at 650℃ transform from incompletely superelasticity to linear-like superelasticity. Moreover, with increasing N, the energy dissipation ability of the alloy annealed at 590 and 650℃ descend gradually, and tend to stability. The energy dissipation ability of the alloy annealed at 350℃ nearly keeps constant. In order to get excellent SE, the annealing temperature of Ti-50.8Ni-0.3Cr alloy should be below recrystallization temperature.
Supported by Natural Science Foundation of Shaanxi Province (No.2009JM6010) and Special Scientific Research Program Founded by Shaanxi Provincial Education Department (No.09JK375)
[1] Janke L, Czaderski C, Motavalli M, Ruth J. Mater Struct, 2005; 38: 578
[2] Choi J Y, Nemat–Nasser S. Mater Sci Eng, 2006; A432: 100
[3] Dong Y S, Xiong J L, Li A Q, Lin P H. Mater Sci Eng, 2006; A416: 92
[4] Jiang H C, Rong L J. Mater Sci Eng, 2006; A438–440: 883
[5] He Z R, Wang F, Wang Y S, Xia P J, Yang B. Acta Metall Sin, 2007; 43: 1293
(贺志荣, 王 芳, 王永善, 夏鹏举, 杨波. 金属学报, 2007; 43: 1293)
[6] Wang Y B, Zheng Y F, Liu Y. J Alloys Compd, 2009; 477: 764
[7] He Z R, Wang F. Acta Metall Sin, 2008; 44: 23
(贺志荣, 王\芳. 金属学报, 2008; 44: 23)
[8] Huang X W, Dong G N, Zhou Z R, Xie Y B. J Mater Sci, 2005; 40: 1059
[9] He Z R, Wang F. Heat Treat Met, 2008; 33(5): 16
(贺志荣, 王芳. 金属热处理, 2008; 33(5): 16)
[10] He Z R, Wang F. Acta Metall Sin, 2010; 46: 329
(贺志荣, 王 芳. 金属学报, 2010; 46: 329)
[11] He Z R. Acta Metall Sin, 2008; 44: 1076
(贺志荣. 金属学报, 2008; 44: 1076)
[12] Zheng Y F, Huang B M, Zhang J X, Zhao L C. Mater Sci Eng, 2000; A279: 25
[13] Tsuchiya K, Inuzuka M, Tomus D, Hosokawa A, Nakayama H,Morii K, Todaka Y, UmemotoM. Mater Sci Eng, 2006; A438–440: 643
[14] Chang B C, Shaw J A, Iadicola M A. Continuum Mech Thermodyn, 2006; 18: 83
[15] Chumlyakov Y I, Kireeva I V, Karaman I, Panchenko E Y, Zakharova E G, Tverskov A V, Ovsyannikov A V, Nazarov K M, Kirillov V A. Russ Phys J, 2004; 47: 893