Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (2): 143-153    DOI: 10.11900/0412.1961.2022.00647
Overview Current Issue | Archive | Adv Search |
TG-AHSS Materials Design Based on Thermodynamic and Generalized Stability
ZHANG Yu1, WU Pan1, JIA Dongsheng1, HUANG Linke1, JIA Xiaoqing2, LIU Feng1,3()
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Analytical and Testing Center, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

ZHANG Yu, WU Pan, JIA Dongsheng, HUANG Linke, JIA Xiaoqing, LIU Feng. TG-AHSS Materials Design Based on Thermodynamic and Generalized Stability. Acta Metall Sin, 2024, 60(2): 143-153.

Download:  HTML  PDF(1188KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Third-generation advanced high-strength steel (TG-AHSS) recently garnered significant attention in the field of materials science and the automotive industry. This study focuses on the composition design, heat treatment processing, and mechanisms underlying the strengthening and deformation of TG-AHSS. The principle of composition design for TG-AHSS is expounded based on thermodynamic stability. Furthermore, several representative heat treatment processes are interpreted by generalized stability (GS). The strengthening and deformation mechanisms of the TG-AHSS are summarized from the perspective of the thermo-kinetic connectivity arising from the GS and the thermo-kinetic correlation. Finally, considering concurrently thermodynamics and kinetics, the design strategy of the TG-AHSS was summarized and outlooked.

Key words:  TG-AHSS      composition design      thermodynamic stability      generalized stability      thermo-kinetic correlation     
Received:  27 December 2022     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52130110);National Natural Science Foundation of China(51790480);National Natural Science Foundation of China(52271116);National Natural Science Foundation of China(51901185)
Corresponding Authors:  LIU Feng, professor, Tel: 13891985103, E-mail: liufeng@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00647     OR     https://www.ams.org.cn/EN/Y2024/V60/I2/143

Fig.1  Qualitative demonstration of thermo-kinetic correlations and generalized stability (Δ) [36]G*, ΔG—thermodynamic driving force of reference and final states (in phase transition or deformation), respectively; Q*, Q —kinetic energy barrier of reference and final states (in phase transition or deformation), respectively)
Fig.2  Comparison of mechanical properties of third-generation of advanced high strength steel (TG-AHSS) in different heat treatment processing[39-54] (Q&P—quenching and partitioning; Q-P-T—quenching, partitioning, and tempering; ART—austenite reverse transformation; CBE—chemical boundary engineering)
Fig.3  Free energy change of a micro-system with new phase lattices in the process of nucleation and growth[35]
Fig.4  Qualitative theory of the simultaneous increasing thermodynamic driving force and kinetic energy barrier or strength and ductility[36]
Fig.5  Qualitative demonstration of thermo-kinetic coherence based on thermo-kinetic correlation and generalized stability (GS)[36] (PTs—phase transformations)
1 Christian J W. The Theory of Transformations in Metals and Alloys [M]. Kidlington: Elsevier, 2002: 1
2 Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip [J]. Prog. Mater. Sci., 1975, 19: 1
doi: 10.1016/0079-6425(75)90005-5
3 Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
4 Song S J, Che W K, Zhang J B, et al. Kinetics and microstructural modeling of isothermal austenite-to-ferrite transformation in Fe-C-Mn-Si steels [J]. J. Mater. Sci. Technol., 2019, 35: 1753
doi: 10.1016/j.jmst.2019.04.010
5 Wang K, Shang S L, Wang Y, et al. Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study [J]. Acta Mater., 2018, 147: 261
doi: 10.1016/j.actamat.2018.01.013
6 Wang K, Zhang L, Liu F. Multi-scale modeling of the complex microstructural evolution in structural phase transformations [J]. Acta Mater., 2019, 162: 78
doi: 10.1016/j.actamat.2018.09.046
7 Peng H R, Liu B S, Liu F. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43: 21
doi: 10.1016/j.jmst.2019.11.006
8 Liu F, Wang H F, Song S J, et al. Competitions correlated with nucleation and growth in non-equilibrium solidification and solid-state transformation [J]. Prog. Phys., 2012, 32(2): 57
刘 峰, 王海丰, 宋韶杰 等. 非平衡凝固与固态相变中有关形核和长大的竞争研究(英文) [J]. 物理学进展, 2012, 32(2): 57
9 Zhang Y, He Y Q, Zhang Y Y, et al. Bainitic transformation and generalized stability [J]. Scr. Mater., 2023, 227: 115311
doi: 10.1016/j.scriptamat.2023.115311
10 Huang L K, Lin W T, Wang K, et al. Grain boundary-constrained reverse austenite transformation in nanostructured Fe alloy: Model and application [J]. Acta Mater., 2018, 154: 56
doi: 10.1016/j.actamat.2018.05.021
11 Chen Y Z, Wang K, Shan G B, et al. Grain size stabilization of mechanically alloyed nanocrystalline Fe-Zr alloys by forming highly dispersed coherent Fe-Zr-O nanoclusters [J]. Acta Mater., 2018, 158: 340
doi: 10.1016/j.actamat.2018.07.070
12 Song S J, Liu F. Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation [J]. Acta Mater., 2016, 108: 85
doi: 10.1016/j.actamat.2016.02.010
13 Peng H R, Huang L K, Liu F. A thermo-kinetic correlation for grain growth in nanocrystalline alloys [J]. Mater Lett., 2018, 219: 276
doi: 10.1016/j.matlet.2018.02.114
14 Lin B, Wang K, Liu F, et al. An intrinsic correlation between driving force and energy barrier upon grain boundary migration [J]. J. Mater. Sci. Technol., 2018, 34: 1359
doi: 10.1016/j.jmst.2017.11.002
15 Song S J, Liu F, Zhang Z H. Analysis of elastic-plastic accommodation due to volume misfit upon solid-state phase transformation [J]. Acta Mater., 2014, 64: 266
doi: 10.1016/j.actamat.2013.10.039
16 Huang L K, Lin W T, Zhang Y B, et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations [J]. Acta Mater., 2020, 201: 167
doi: 10.1016/j.actamat.2020.10.005
17 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
18 Rong Y H. Advanced Q-P-T steels with ultrahigh strength-high ductility [J]. Acta Metall. Sin., 2011, 47: 1483
戎咏华. 先进超高强度-高塑性Q-P-T钢 [J]. 金属学报, 2011, 47: 1483
doi: 10.3724/SP.J.1037.2011.00514
19 Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
doi: 10.1016/j.scriptamat.2016.07.013
20 Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
21 Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
22 Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications [J]. Mater. Sci. Technol., 2017, 33: 1713
doi: 10.1080/02670836.2017.1312208
23 Furukawa T, Huang H, Matsumura O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity [J]. Mater. Sci. Technol., 1994, 10: 964
doi: 10.1179/mst.1994.10.11.964
24 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
25 Kim S J, Lee C G, Choi I, et al. Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15wt pct C transformation-induced plasticity-aided cold-rolled steel sheets [J]. Metall. Mater. Trans., 2001, 32A: 505
26 Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique [J]. Acta Mater., 2014, 77: 236
doi: 10.1016/j.actamat.2014.05.057
27 Dong H, Wang M Q, Weng Y Q. Performance improvement of steels through M3 structure control [J]. Iron Steel, 2010, 45(7): 1
doi: 10.1080/03019233.2017.1286546
董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术 [J]. 钢铁, 2010, 45(7): 1
28 Liang J H. Strengthening-toughening mechanism and microstructural control ultra high strength aluminum-containing medium manganese steel [D]. Beijing: University of Science and Technology Beijing, 2019
梁驹华. 超高强含铝中锰钢的强韧化机制及组织调控 [D]. 北京: 北京科技大学, 2019
29 Ghosh G, Olson G B. Kinetics of F.C.C.→B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
doi: 10.1016/0956-7151(94)90468-5
30 Jafary-Zadeh M, Aitken Z H, Tavakoli R, et al. On the controllability of phase formation in rapid solidification of high entropy alloys [J]. J. Alloys Compd., 2018, 748: 679
doi: 10.1016/j.jallcom.2018.03.165
31 Yang X S, Sun S, Zhang T Y. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ→hcp ε→bcc α′ martensitic phase transformation [J]. Acta Mater., 2015, 95: 264
doi: 10.1016/j.actamat.2015.05.034
32 Hou Z Y, Hedstrӧm P, Chen Q, et al. Quantitative modeling and experimental verification of carbide precipitation in a martensitic Fe-0.16wt%C-4.0wt%Cr alloy [J]. Calphad, 2016, 53: 39
doi: 10.1016/j.calphad.2016.03.001
33 Mukherjee M, Mohanty O N, Hashimoto S I, et al. Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure [J]. ISIJ Int., 2006, 46: 316
doi: 10.2355/isijinternational.46.316
34 Ghosh G, Olson G B. Kinetics of f.c.c.→b.c.c. heterogeneous martensitic nucleation—II. Thermal activation [J]. Acta Metall. Mater., 1994, 42: 3371
doi: 10.1016/0956-7151(94)90469-3
35 He Y Q, Song S J, Du J L, et al. Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability [J]. J. Mater. Sci. Technol., 2022, 127: 225
doi: 10.1016/j.jmst.2022.04.008
36 Wang T L, Liu F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook [J]. J. Magnes. Alloy., 2022, 10: 326
37 Wu P, Zhang Y B, Hu J Q, et al. Generalized stability criterion for controlling solidification segregation upon twin-roll casting [J]. J. Mater. Sci. Technol., 2023, 134: 163
doi: 10.1016/j.jmst.2022.06.042
38 Liu F, Huang L K. Thermo-kinetics of phase transformations [M]. Beijing: Science Press, 2023: 84
刘 峰, 黄林科. 相变热-动力学 [M]. 北京: 科学出版社, 2023: 84
39 Kantanen P, Anttila S, Karjalainen P, et al. Microstructures and mechanical properties of three medium-Mn steels processed via quenching and partitioning as well as austenite reversion heat treatments [J]. Mater. Sci. Eng., 2022, A847: 143341
40 Zou D Q, Li S H, He J, et al. The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process [J]. Mater. Sci. Eng., 2018, A715: 243
41 Cai M H, Huang H S, Pan H J, et al. Microstructure and tensile properties of a Nb-Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 665
doi: 10.1007/s40195-017-0597-0
42 Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, A658: 400
43 Cai Z H, Ding H, Ying Z Y, et al. Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel [J]. J. Mater. Eng. Perform., 2014, 23: 1131
doi: 10.1007/s11665-014-0866-2
44 Liu X Y, Han Y, Wei J H, et al. Effect of tempering temperature on microstructure and mechanical properties of a low carbon bainitic steel treated by quenching-partitioning-tempering (QPT) process [J]. J. Mater. Res. Technol., 2023, 23: 911
doi: 10.1016/j.jmrt.2023.01.061
45 Li Y, Li W, Xu C, et al. Investigation of hierarchical precipitation on bimodal-grained austenite and mechanical properties in quenching-partitioning-tempering steel [J]. Mater. Sci. Eng., 2020, A781: 139207
46 Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126
doi: 10.1016/j.actamat.2017.12.035
47 Ou M G, Yang C L, Zhu J, et al. Influence of Cr content and Q-P-T process on the microstructure and properties of cold-coiled spring steel [J]. J. Alloys Compd., 2017, 697: 43
doi: 10.1016/j.jallcom.2016.12.134
48 Li Y, Li W, Min N, et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels [J]. Acta Mater., 2017, 139: 96
doi: 10.1016/j.actamat.2017.08.003
49 Liu X B, Yan L G, Zhang X F. Suppressing precipitation during the reverse transformation from martensite to austenite in a cold-rolled austenite stainless steel [J]. Mater. Sci. Eng., 2021, A804: 140514
50 Yan S, Liang T S, Chen J Q, et al. A novel Cu-Ni added medium Mn steel: Precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Mater. Sci. Eng., 2019, A746: 73
51 Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing [J]. Mater. Sci. Eng., 2019, A759: 90
52 Mallick P, Tewary N K, Ghosh S K, et al. Microstructure-tensile property correlation in 304 stainless steel after cold deformation and austenite reversion [J]. Mater. Sci. Eng., 2017, A707: 488
53 Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
doi: 10.1016/j.actamat.2018.02.005
54 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: 1430
doi: 10.1126/sciadv.aay1430 pmid: 32258395
55 Zhang Y M, Wang C Y, Reddy K M, et al. Study on the deformation mechanism of a high-nitrogen duplex stainless steel with excellent mechanical properties originated from bimodal grain design [J]. Acta. Mater., 2022, 226: 117670
doi: 10.1016/j.actamat.2022.117670
56 Lorthios J, Nguyen F, Gourgues A F, et al. Damage observation in a high-manganese austenitic TWIP steel by synchrotron radiation computed tomography [J]. Scr. Mater., 2010, 63: 1220
doi: 10.1016/j.scriptamat.2010.08.042
57 Xu S S, Li J P, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel [J]. Int. J. Plast., 2020, 128: 102677
doi: 10.1016/j.ijplas.2020.102677
58 Gwon H, Kim J K, Shin S, et al. The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel [J]. Mater. Sci. Eng., 2017, A696: 416
59 Wang J, Weyland M, Bikmukhametov I, et al. Transformation from cluster to nano-precipitate in microalloyed ferritic steel [J]. Scr. Mater., 2019, 160: 53
doi: 10.1016/j.scriptamat.2018.09.039
60 Shi C B, Zhu X, et al. Precipitation and growth of Laves phase and NbC during aging and its effect on tensile properties of a novel 15Cr-22Ni-1Nb austenitic heat-resistant steel [J]. Mater. Sci. Eng., 2022, A854: 143822
61 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
62 Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
63 Liu S, Qian L H, Meng J Y, et al. Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying [J]. Scr. Mater., 2017, 127: 10
doi: 10.1016/j.scriptamat.2016.08.034
64 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
65 Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
66 Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
doi: 10.1179/026708399773002782
67 Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
doi: 10.1016/j.actamat.2021.116984
68 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
doi: 10.1016/j.actamat.2015.08.076
69 Wu Y, Ma D, Li Q K, et al. Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction [J]. Acta Mater., 2017, 124: 478
doi: 10.1016/j.actamat.2016.11.029
70 Liu F, Yang G C. Effect of microstructure and γ′ precipitate from undercooled DD3 superalloy on mechanical properties [J]. J. Mater. Sci., 2002, 37: 2713
doi: 10.1023/A:1015821117177
71 Liu F, Yang G C. Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions [J]. Int. Mater. Rev., 2006, 51: 145
doi: 10.1179/174328006X102484
72 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166 pmid: 28336664
73 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
[1] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[3] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[4] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[5] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[6] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[7] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[8] ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2013, 49(11): 1467-1472.
[9] WANG Qing ZHA Qianfeng LIU Enxue DONG Chuang WANG Xuejun TAN Chaoxin JI Chunjun. COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL[J]. 金属学报, 2012, 48(10): 1201-1206.
[10] YUAN Liang QIANG Jianbing PANG Chang WANG Yinmin WANG Qing DONG Chuang. COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC[J]. 金属学报, 2011, 47(8): 1003-1008.
[11] MA Rentao HAO Chuanpu WANG Qing REN Mingfa WANG Yingmin DONG Chuang. CLUSTER-PLUS-GLUE-ATOM MODEL AND COMPOSITION DESIGN OF BCC Ti-Mo-Nb-Zr SOLID SOLUTION ALLOYS WITH LOW YOUNG'S MODULUS[J]. 金属学报, 2010, 46(9): 1034-1040.
[12] CHEN Wei-Rong; Qingyu Zhang. (Fe-B-Y)-based quinary bulk metallic glasses designed using cluster line criterion[J]. 金属学报, 2007, 43(8): 797-802 .
[13] XING Hianran; QIAO Zhiyu; WEI Shoukun(University of Science and Technology Beijing; Beijing 100083)(Manuscript received 1995-05-02; in revised form 1995-11-05). THERMODYNAMIC STABILITY OF COMPLEX OXIDE Sm_(1+x)Ba_(2-x)Cu_3O_y(0≤x≤0.4)[J]. 金属学报, 1996, 32(2): 144-148.
No Suggested Reading articles found!