|
|
TG-AHSS Materials Design Based on Thermodynamic and Generalized Stability |
ZHANG Yu1, WU Pan1, JIA Dongsheng1, HUANG Linke1, JIA Xiaoqing2, LIU Feng1,3( ) |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 3 Analytical and Testing Center, Northwestern Polytechnical University, Xi'an 710072, China |
|
Cite this article:
ZHANG Yu, WU Pan, JIA Dongsheng, HUANG Linke, JIA Xiaoqing, LIU Feng. TG-AHSS Materials Design Based on Thermodynamic and Generalized Stability. Acta Metall Sin, 2024, 60(2): 143-153.
|
Abstract Third-generation advanced high-strength steel (TG-AHSS) recently garnered significant attention in the field of materials science and the automotive industry. This study focuses on the composition design, heat treatment processing, and mechanisms underlying the strengthening and deformation of TG-AHSS. The principle of composition design for TG-AHSS is expounded based on thermodynamic stability. Furthermore, several representative heat treatment processes are interpreted by generalized stability (GS). The strengthening and deformation mechanisms of the TG-AHSS are summarized from the perspective of the thermo-kinetic connectivity arising from the GS and the thermo-kinetic correlation. Finally, considering concurrently thermodynamics and kinetics, the design strategy of the TG-AHSS was summarized and outlooked.
|
Received: 27 December 2022
|
|
Fund: National Natural Science Foundation of China(52130110);National Natural Science Foundation of China(51790480);National Natural Science Foundation of China(52271116);National Natural Science Foundation of China(51901185) |
Corresponding Authors:
LIU Feng, professor, Tel: 13891985103, E-mail: liufeng@nwpu.edu.cn
|
1 |
Christian J W. The Theory of Transformations in Metals and Alloys [M]. Kidlington: Elsevier, 2002: 1
|
2 |
Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip [J]. Prog. Mater. Sci., 1975, 19: 1
doi: 10.1016/0079-6425(75)90005-5
|
3 |
Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
|
4 |
Song S J, Che W K, Zhang J B, et al. Kinetics and microstructural modeling of isothermal austenite-to-ferrite transformation in Fe-C-Mn-Si steels [J]. J. Mater. Sci. Technol., 2019, 35: 1753
doi: 10.1016/j.jmst.2019.04.010
|
5 |
Wang K, Shang S L, Wang Y, et al. Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study [J]. Acta Mater., 2018, 147: 261
doi: 10.1016/j.actamat.2018.01.013
|
6 |
Wang K, Zhang L, Liu F. Multi-scale modeling of the complex microstructural evolution in structural phase transformations [J]. Acta Mater., 2019, 162: 78
doi: 10.1016/j.actamat.2018.09.046
|
7 |
Peng H R, Liu B S, Liu F. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43: 21
doi: 10.1016/j.jmst.2019.11.006
|
8 |
Liu F, Wang H F, Song S J, et al. Competitions correlated with nucleation and growth in non-equilibrium solidification and solid-state transformation [J]. Prog. Phys., 2012, 32(2): 57
|
|
刘 峰, 王海丰, 宋韶杰 等. 非平衡凝固与固态相变中有关形核和长大的竞争研究(英文) [J]. 物理学进展, 2012, 32(2): 57
|
9 |
Zhang Y, He Y Q, Zhang Y Y, et al. Bainitic transformation and generalized stability [J]. Scr. Mater., 2023, 227: 115311
doi: 10.1016/j.scriptamat.2023.115311
|
10 |
Huang L K, Lin W T, Wang K, et al. Grain boundary-constrained reverse austenite transformation in nanostructured Fe alloy: Model and application [J]. Acta Mater., 2018, 154: 56
doi: 10.1016/j.actamat.2018.05.021
|
11 |
Chen Y Z, Wang K, Shan G B, et al. Grain size stabilization of mechanically alloyed nanocrystalline Fe-Zr alloys by forming highly dispersed coherent Fe-Zr-O nanoclusters [J]. Acta Mater., 2018, 158: 340
doi: 10.1016/j.actamat.2018.07.070
|
12 |
Song S J, Liu F. Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation [J]. Acta Mater., 2016, 108: 85
doi: 10.1016/j.actamat.2016.02.010
|
13 |
Peng H R, Huang L K, Liu F. A thermo-kinetic correlation for grain growth in nanocrystalline alloys [J]. Mater Lett., 2018, 219: 276
doi: 10.1016/j.matlet.2018.02.114
|
14 |
Lin B, Wang K, Liu F, et al. An intrinsic correlation between driving force and energy barrier upon grain boundary migration [J]. J. Mater. Sci. Technol., 2018, 34: 1359
doi: 10.1016/j.jmst.2017.11.002
|
15 |
Song S J, Liu F, Zhang Z H. Analysis of elastic-plastic accommodation due to volume misfit upon solid-state phase transformation [J]. Acta Mater., 2014, 64: 266
doi: 10.1016/j.actamat.2013.10.039
|
16 |
Huang L K, Lin W T, Zhang Y B, et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations [J]. Acta Mater., 2020, 201: 167
doi: 10.1016/j.actamat.2020.10.005
|
17 |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
|
18 |
Rong Y H. Advanced Q-P-T steels with ultrahigh strength-high ductility [J]. Acta Metall. Sin., 2011, 47: 1483
|
|
戎咏华. 先进超高强度-高塑性Q-P-T钢 [J]. 金属学报, 2011, 47: 1483
doi: 10.3724/SP.J.1037.2011.00514
|
19 |
Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
doi: 10.1016/j.scriptamat.2016.07.013
|
20 |
Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
|
21 |
Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
|
22 |
Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications [J]. Mater. Sci. Technol., 2017, 33: 1713
doi: 10.1080/02670836.2017.1312208
|
23 |
Furukawa T, Huang H, Matsumura O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity [J]. Mater. Sci. Technol., 1994, 10: 964
doi: 10.1179/mst.1994.10.11.964
|
24 |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
25 |
Kim S J, Lee C G, Choi I, et al. Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15wt pct C transformation-induced plasticity-aided cold-rolled steel sheets [J]. Metall. Mater. Trans., 2001, 32A: 505
|
26 |
Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique [J]. Acta Mater., 2014, 77: 236
doi: 10.1016/j.actamat.2014.05.057
|
27 |
Dong H, Wang M Q, Weng Y Q. Performance improvement of steels through M3 structure control [J]. Iron Steel, 2010, 45(7): 1
doi: 10.1080/03019233.2017.1286546
|
|
董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术 [J]. 钢铁, 2010, 45(7): 1
|
28 |
Liang J H. Strengthening-toughening mechanism and microstructural control ultra high strength aluminum-containing medium manganese steel [D]. Beijing: University of Science and Technology Beijing, 2019
|
|
梁驹华. 超高强含铝中锰钢的强韧化机制及组织调控 [D]. 北京: 北京科技大学, 2019
|
29 |
Ghosh G, Olson G B. Kinetics of F.C.C.→B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
doi: 10.1016/0956-7151(94)90468-5
|
30 |
Jafary-Zadeh M, Aitken Z H, Tavakoli R, et al. On the controllability of phase formation in rapid solidification of high entropy alloys [J]. J. Alloys Compd., 2018, 748: 679
doi: 10.1016/j.jallcom.2018.03.165
|
31 |
Yang X S, Sun S, Zhang T Y. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ→hcp ε→bcc α′ martensitic phase transformation [J]. Acta Mater., 2015, 95: 264
doi: 10.1016/j.actamat.2015.05.034
|
32 |
Hou Z Y, Hedstrӧm P, Chen Q, et al. Quantitative modeling and experimental verification of carbide precipitation in a martensitic Fe-0.16wt%C-4.0wt%Cr alloy [J]. Calphad, 2016, 53: 39
doi: 10.1016/j.calphad.2016.03.001
|
33 |
Mukherjee M, Mohanty O N, Hashimoto S I, et al. Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure [J]. ISIJ Int., 2006, 46: 316
doi: 10.2355/isijinternational.46.316
|
34 |
Ghosh G, Olson G B. Kinetics of f.c.c.→b.c.c. heterogeneous martensitic nucleation—II. Thermal activation [J]. Acta Metall. Mater., 1994, 42: 3371
doi: 10.1016/0956-7151(94)90469-3
|
35 |
He Y Q, Song S J, Du J L, et al. Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability [J]. J. Mater. Sci. Technol., 2022, 127: 225
doi: 10.1016/j.jmst.2022.04.008
|
36 |
Wang T L, Liu F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook [J]. J. Magnes. Alloy., 2022, 10: 326
|
37 |
Wu P, Zhang Y B, Hu J Q, et al. Generalized stability criterion for controlling solidification segregation upon twin-roll casting [J]. J. Mater. Sci. Technol., 2023, 134: 163
doi: 10.1016/j.jmst.2022.06.042
|
38 |
Liu F, Huang L K. Thermo-kinetics of phase transformations [M]. Beijing: Science Press, 2023: 84
|
|
刘 峰, 黄林科. 相变热-动力学 [M]. 北京: 科学出版社, 2023: 84
|
39 |
Kantanen P, Anttila S, Karjalainen P, et al. Microstructures and mechanical properties of three medium-Mn steels processed via quenching and partitioning as well as austenite reversion heat treatments [J]. Mater. Sci. Eng., 2022, A847: 143341
|
40 |
Zou D Q, Li S H, He J, et al. The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process [J]. Mater. Sci. Eng., 2018, A715: 243
|
41 |
Cai M H, Huang H S, Pan H J, et al. Microstructure and tensile properties of a Nb-Mo microalloyed 6.5Mn alloy processed by intercritical annealing and quenching and partitioning [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 665
doi: 10.1007/s40195-017-0597-0
|
42 |
Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, A658: 400
|
43 |
Cai Z H, Ding H, Ying Z Y, et al. Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel [J]. J. Mater. Eng. Perform., 2014, 23: 1131
doi: 10.1007/s11665-014-0866-2
|
44 |
Liu X Y, Han Y, Wei J H, et al. Effect of tempering temperature on microstructure and mechanical properties of a low carbon bainitic steel treated by quenching-partitioning-tempering (QPT) process [J]. J. Mater. Res. Technol., 2023, 23: 911
doi: 10.1016/j.jmrt.2023.01.061
|
45 |
Li Y, Li W, Xu C, et al. Investigation of hierarchical precipitation on bimodal-grained austenite and mechanical properties in quenching-partitioning-tempering steel [J]. Mater. Sci. Eng., 2020, A781: 139207
|
46 |
Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel [J]. Acta Mater., 2018, 146: 126
doi: 10.1016/j.actamat.2017.12.035
|
47 |
Ou M G, Yang C L, Zhu J, et al. Influence of Cr content and Q-P-T process on the microstructure and properties of cold-coiled spring steel [J]. J. Alloys Compd., 2017, 697: 43
doi: 10.1016/j.jallcom.2016.12.134
|
48 |
Li Y, Li W, Min N, et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels [J]. Acta Mater., 2017, 139: 96
doi: 10.1016/j.actamat.2017.08.003
|
49 |
Liu X B, Yan L G, Zhang X F. Suppressing precipitation during the reverse transformation from martensite to austenite in a cold-rolled austenite stainless steel [J]. Mater. Sci. Eng., 2021, A804: 140514
|
50 |
Yan S, Liang T S, Chen J Q, et al. A novel Cu-Ni added medium Mn steel: Precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing [J]. Mater. Sci. Eng., 2019, A746: 73
|
51 |
Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing [J]. Mater. Sci. Eng., 2019, A759: 90
|
52 |
Mallick P, Tewary N K, Ghosh S K, et al. Microstructure-tensile property correlation in 304 stainless steel after cold deformation and austenite reversion [J]. Mater. Sci. Eng., 2017, A707: 488
|
53 |
Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
doi: 10.1016/j.actamat.2018.02.005
|
54 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: 1430
doi: 10.1126/sciadv.aay1430
pmid: 32258395
|
55 |
Zhang Y M, Wang C Y, Reddy K M, et al. Study on the deformation mechanism of a high-nitrogen duplex stainless steel with excellent mechanical properties originated from bimodal grain design [J]. Acta. Mater., 2022, 226: 117670
doi: 10.1016/j.actamat.2022.117670
|
56 |
Lorthios J, Nguyen F, Gourgues A F, et al. Damage observation in a high-manganese austenitic TWIP steel by synchrotron radiation computed tomography [J]. Scr. Mater., 2010, 63: 1220
doi: 10.1016/j.scriptamat.2010.08.042
|
57 |
Xu S S, Li J P, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel [J]. Int. J. Plast., 2020, 128: 102677
doi: 10.1016/j.ijplas.2020.102677
|
58 |
Gwon H, Kim J K, Shin S, et al. The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel [J]. Mater. Sci. Eng., 2017, A696: 416
|
59 |
Wang J, Weyland M, Bikmukhametov I, et al. Transformation from cluster to nano-precipitate in microalloyed ferritic steel [J]. Scr. Mater., 2019, 160: 53
doi: 10.1016/j.scriptamat.2018.09.039
|
60 |
Shi C B, Zhu X, et al. Precipitation and growth of Laves phase and NbC during aging and its effect on tensile properties of a novel 15Cr-22Ni-1Nb austenitic heat-resistant steel [J]. Mater. Sci. Eng., 2022, A854: 143822
|
61 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
62 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
|
63 |
Liu S, Qian L H, Meng J Y, et al. Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying [J]. Scr. Mater., 2017, 127: 10
doi: 10.1016/j.scriptamat.2016.08.034
|
64 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
|
65 |
Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
|
66 |
Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15: 30
doi: 10.1179/026708399773002782
|
67 |
Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
doi: 10.1016/j.actamat.2021.116984
|
68 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
doi: 10.1016/j.actamat.2015.08.076
|
69 |
Wu Y, Ma D, Li Q K, et al. Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction [J]. Acta Mater., 2017, 124: 478
doi: 10.1016/j.actamat.2016.11.029
|
70 |
Liu F, Yang G C. Effect of microstructure and γ′ precipitate from undercooled DD3 superalloy on mechanical properties [J]. J. Mater. Sci., 2002, 37: 2713
doi: 10.1023/A:1015821117177
|
71 |
Liu F, Yang G C. Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions [J]. Int. Mater. Rev., 2006, 51: 145
doi: 10.1179/174328006X102484
|
72 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166
pmid: 28336664
|
73 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|