Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (7): 1082-1092    DOI: 10.11900/0412.1961.2023.00240
Research paper Current Issue | Archive | Adv Search |
Phase-Field Simulations of Phase Transformation and Crack Evolution in Zirconium Alloy Oxide Film
WANG Xiaoqi1,2, ZHANG Jinhu1,2(), GUO Hui1,2, LI Xuexiong1, XU Haisheng1,2, BAI Chunguang1,2, XU Dongsheng1,2(), YANG Rui1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

WANG Xiaoqi, ZHANG Jinhu, GUO Hui, LI Xuexiong, XU Haisheng, BAI Chunguang, XU Dongsheng, YANG Rui. Phase-Field Simulations of Phase Transformation and Crack Evolution in Zirconium Alloy Oxide Film. Acta Metall Sin, 2025, 61(7): 1082-1092.

Download:  HTML  PDF(1628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys are considered as important nuclear reactor structural materials owing to their low thermal neutron absorption cross-section, good corrosion resistance, and good mechanical properties in high-temperature and high-pressure water. However, under high temperature and corrosion conditions, an oxide film forms on the surface of zirconium alloys, and its growth rate increases rapidly when the thickness is 2-3 μm, leading to a transition in corrosion kinetics, which limits its service life in the reactor. In this study, the transformation of zirconia from tetragonal (t-ZrO2) to monoclinic (m-ZrO2) and the crack propagation behavior in the oxidation layer on zirconium alloys have been investigated using phase-field simulation. During the transformation of t-ZrO2 to m-ZrO2 in the oxide film, the t-ZrO2 matrix undergoes compressive and tensile stresses along the long and short axes of the m-ZrO2 precipitate, respectively, whereas the m-ZrO2 precipitate primarily undergoes compressive stress during the transformation. Moreover, the stresses increase with the growth of the m-ZrO2 grains. The simulations of crack evolution reveal that the cracks in the oxidation layer parallel to the oxide-metal interface expand under applied tensile stress perpendicular to the interface. Such cracks may connect with other isolated cracks and defects forming a defect layer. Upon extending to the oxide-metal interface, surface cracks perpendicular to the interface bifurcate in the oxide rather than penetrate into the metal matrix, which facilitates the peeling off of the oxidation layer from the substrate.

Key words:  zircaloy      phase-field method      phase transformation      crack     
Received:  05 June 2023     
ZTFLH:  TG146.4  
Fund: National Key Research and Development Program of China(2021YFB3702604);Informatization Program of Chinese Academy of Sciences(CAS-WX2021PY-0103)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00240     OR     https://www.ams.org.cn/EN/Y2025/V61/I7/1082

ParameterSymbolValue
Chemical driving forceΔG36.8 × 106 J·m-3
Gradient energy coefficientkη1 × 10-8 J·m-1
Energy density coefficienta0.14
Energy density coefficientb12.42
Energy density coefficientc12.28
Kinetic coefficientL2 m3·J-1·s-1
Table 1  Parameters employed in the simulation[24]
ParametersSymbolValue
Young's modulus of t-ZrO2Et212 GPa
Young's modulus of m-ZrO2Em241 GPa
Poisson's ratio of t-ZrO2νt0.33
Poisson's ratio of m-ZrO2νm0.29
Eigenstrain of t-ZrO2εij0 (t-ZrO2)0.00490.07610.07610.0180
Eigenstrain of m-ZrO2εij0 (m-ZrO2)0.0049-0.0761-0.07610.0180

Eigenstrain of t-ZrO2

(after 90° rotation about Y axis)

εij0' (t-ZrO2)00.076100.0180

Eigenstrain of m-ZrO2

(after 90° rotation about Y axis)

εij0' (m-ZrO2)0-0.076100.0180
Table 2  Parameters employed in elastic energy calculation[24]
Fig.1  Schematic of single crystal phase-field model with an m-ZrO2 nucleus
Fig.2  Grain growth process and evolution of the morphology of m-ZrO2 (η—non-conserved order parameter, t—time)
(a) t = 1.0 × 10-12 s (b) t = 6.0 × 10-8 s (c) t = 1.0 × 10-7 s (d) t = 3.0 × 10-7 s
Fig.3  Evolution of stress distribution during the growth of m-ZrO2 at t = 1.0 × 10-12 s (a1-c1), t = 6.0 × 10-8 s (a2-c2), t = 1.0 × 10-7 s (a3-c3), and t = 3.0 × 10-7 s (a4-c4)
(a1-a4) principal stress S11 (b1-b4) principal stress S22 (c1-c4) shear stress S12
Fig.4  Grain growth of m-ZrO2 after 90° rotation about Y axis
(a) t = 1.0 × 10-12 s (b) t = 6.0 × 10-8 s (c) t = 1.0 × 10-7 s (d) t = 3.0 × 10-7 s
Fig.5  Evolution of stress distribution during grain growth after rotation of 90° about Y axis at t = 1.0 × 10-12 s (a1-c1), t = 6.0 × 10-8 s (a2-c2), t = 1.0 × 10-7 s (a3-c3), and t = 3.0 × 10-7 s (a4-c4)
(a1-a4) S11 (b1-b4) S22 (c1-c4) S12
Fig.6  Schematic of crack parallel to the oxide-metal interface (unit: mm. σ—tensile stress)
Fig.7  Phase-field simulations of stress distribution (a, c) and phase-field variable (b, d) of crack parallel to the oxide-metal interface
(a, b) prior to propagation (step = 470) (c, d) after the propagation (step = 475)
Fig.8  Force-displacement curve for crack parallel to the oxide-metal interface by simulation
Fig.9  Schematic of crack perpendicular to the oxide-metal interface (unit: mm)
Fig.10  Phase-field simulation of crack perpendicular to the oxide-metal interface (ϕ—phase-field order parameter)
(a) initial crack (b) crack reaches interface
(c) crack propagates parallel to interface (d) force-displacement curve
1 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
2 Motta A T, Couet A, Comstock R J. Corrosion of zirconium alloys used for nuclear fuel cladding [J]. Annu. Rev. Mater. Res., 2015, 45: 311
3 Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition [J]. J. Nucl. Mater., 2021, 543: 152474
4 Hu J, Lin W T, Lv Q Y, et al. Oxide formation mechanism of a corrosion-resistant CZ1 zirconium alloy [J]. J. Mater. Sci. Technol., 2023, 147: 6
doi: 10.1016/j.jmst.2022.12.002
5 Ni N, Hudson D, Wei J, et al. How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys [J]. Acta Mater., 2012, 60: 7132
6 Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals [J]. Prog. Mater. Sci., 2001, 46: 309
7 Han E-H. Research trends on micro and nano-scale materials degradation in nuclear power plant [J]. Acta Metall. Sin., 2011, 47: 769
韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究——进展与趋势 [J]. 金属学报, 2011, 47: 769
doi: 10.3724/SP.J.1037.2011.00441
8 Kautz E J, Gwalani B, Lambeets S V M, et al. Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation [J]. npj Mater. Degrad., 2020, 4: 29
9 Wadman B, Andrén H O, Falk L K L. Atom probe analysis of thin oxide layers on zircaloy needles [J]. J. Phys. Colloq., 1989, 50: C8-303
10 Garner A, Gholinia A, Frankel P, et al. The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy [J]. Acta Mater., 2014, 80: 159
11 Liao J J, Zhang W, Zhang J S, et al. Periodic densification-transition behavior of Zr-Sn-Nb-Fe-V alloys during uniform corrosion in superheated steam [J]. Acta Metall. Sin., 2023, 59: 289
廖京京, 张 伟, 张君松 等. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为 [J]. 金属学报, 2023, 59: 289
doi: 10.11900/0412.1961.2021.00214
12 Gong W J, Zhang H L, Qiao Y, et al. Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4 [J]. Corros. Sci., 2013, 74: 323
13 Yilmazbayhan A, Breval E, Motta A T, et al. Transmission electron microscopy examination of oxide layers formed on Zr alloys [J]. J. Nucl. Mater., 2006, 349: 265
14 Lin C, Ruan H H, Shi S Q. Mechanical-chemical coupling phase-field modeling for inhomogeneous oxidation of zirconium induced by stress-oxidation interaction [J]. npj Mater. Degrad., 2020, 4: 22
15 Zhang H X, Li Z K, Zhang J J, et al. Crystal structure of oxide film of NZ2 alloy corroded in different mediums [J]. Chin. J. Mater. Res., 2008, 22: 327
章海霞, 李中奎, 张建军 等. NZ2合金在不同介质中腐蚀后氧化膜的晶体结构 [J]. 材料研究学报, 2008, 22: 327
16 Han E-H, Wang J Q. Effect of surface state on corrosion and stress corrosion for nuclear materials [J]. Acta Metall. Sin., 2023, 59: 513
韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响 [J]. 金属学报, 2023, 59: 513
doi: 10.11900/0412.1961.2023.00123
17 Sakuma T. Phase transformation and microstructure of partially-stabilized zirconia [J]. Trans. Jpn. Inst. Met., 1988, 29: 879
18 Zhao Y H. Understanding and design of metallic alloys guided by phase-field simulations [J]. npj Comput. Mater., 2023, 9: 94
19 Wolten G M. Diffusionless phase transformations in zirconia and hafnia [J]. J. Am. Ceram. Soc., 1963, 46: 418
20 Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
21 Zhao B J, Zhao Y H, Sun Y Y, et al. Effect of Mn composition on the nanometer Cu-rich phase of Fe-Cu-Mn alloy by phase field method [J]. Acta Metall. Sin., 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
赵宝军, 赵宇宏, 孙远洋 等. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究 [J]. 金属学报, 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
22 Yang W K, Jiang X A, Tian X L, et al. Phase-field simulation of nano-α′ precipitates under irradiation and dislocations [J]. J. Mater. Res. Technol., 2023, 22: 1307
23 Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
24 Mamivand M, Asle Zaeem M, El Kadiri H, et al. Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia [J]. Acta Mater., 2013, 61: 5223
25 Biner S B. Programming Phase-Field Modeling [M]. Switzerland: Springer, 2017: 169
26 Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites [J]. C. R. Acad. Sci. Paris, 1994, 318: 1417
27 Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure [J]. Comput. Methods Appl. Mech. Eng., 1998, 157: 69
28 Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: A computational approach [J]. Comput. Methods Appl. Mech. Eng., 1999, 172: 109
29 Michel J C, Moulinec H, Suquet P. A computational scheme for linear and non-linear composites with arbitrary phase contrast [J]. Int. J. Numer. Meth. Eng., 2001, 52: 139
30 Goswami S, Anitescu C, Rabczuk T. Adaptive fourth-order phase field analysis for brittle fracture [J]. Comput. Methods Appl. Mech. Eng., 2020, 361: 112808
31 Bourdin B, Francfort G A, Marigo J J. The variational approach to fracture [J]. J. Elast., 2008, 91: 5
32 Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture [J]. J. Mech. Phys. Solids, 2000, 48: 797
33 Sun X K, Davidson B D. A direct energy balance approach for determining energy release rates in three and four point bend end notched flexure tests [J]. Int. J. Fract., 2005, 135: 51
34 Zhou B X, Li Q, Yao M Y, et al. Microstructure of oxide films formed on zircaloy-4 [J]. Corros. Prot., 2009, 30: 589
周邦新, 李 强, 姚美意 等. Zr-4合金氧化膜的显微组织研究 [J]. 腐蚀与防护, 2009, 30: 589
35 Tejland P, Andrén H O. Origin and effect of lateral cracks in oxide scales formed on zirconium alloys [J]. J. Nucl. Mater., 2012, 430: 64
36 Vermaak N, Parry G, Estevez R, et al. New insight into crack formation during corrosion of zirconium-based metal-oxide systems [J]. Acta Mater., 2013, 61: 4374
37 Duriez C, Dupont T, Schmet B, et al. Zircaloy-4 and M5® high temperature oxidation and nitriding in air [J]. J. Nucl. Mater., 2008, 380: 30
38 Beuzet E, Lamy J S, Bretault A, et al. Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code [J]. Nucl. Eng. Des., 2011, 241: 1217
39 Zhou B X, Liu W Q, Li Q, et al. Mechanism of LiOH aqueous solution accelerating corrosion rate of zircaloy-4 [J]. Chin. J. Mater. Res., 2004, 18: 225
周邦新, 刘文庆, 李 强 等. LiOH水溶液提高Zr-4合金腐蚀速率的机理 [J]. 材料研究学报, 2004, 18: 225
[1] WANG Qiang, LI Xiaobing, HAO Junjie, CHEN Bo, ZHANG Bin, ZHANG Erlin, LIU Kui. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. 金属学报, 2025, 61(7): 1060-1070.
[2] SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. 金属学报, 2025, 61(7): 1011-1023.
[3] ZHANG Wenbin, LI Xiaolong, HAO Shuo, LIU Shengjie, CAI Xingzhou, CHEN Lei, JIN Miao. Microcrack Nucleation and Propagation of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si[J]. 金属学报, 2025, 61(4): 608-618.
[4] QI Min, WANG Qian, MA Yingjie, CAO Hemeng, HUANG Sensen, LEI Jiafeng, YANG Riu. Growth Behavior of Grain Boundary α Phase and Its Effect on the Microtexture During βα Phase Transformation in Ti6246 Titanium Alloys[J]. 金属学报, 2025, 61(2): 265-277.
[5] SONG Yushan, LIU Rui, CUI Yu, LIU Li, WANG Fuhui. Stress Corrosion Behavior of Ni-Cr-Mo-V Steel in 3.5%NaCl Solution Under the Interaction of Hydrostatic Pressure and Tensile Stress[J]. 金属学报, 2025, 61(2): 309-322.
[6] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[7] TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao, YANG Zhigang. Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels[J]. 金属学报, 2025, 61(1): 77-87.
[8] WANG Yanxu, GONG Wu, SU Yuhua, LI Bing. Application of Neutron Characterization Techniques to Metallic Structural Materials[J]. 金属学报, 2024, 60(8): 1001-1016.
[9] SHEN Yang, GU Zhengman, WANG Cong. Phase Transformation Behaviors in the Heat-Affected Zones of Ferritic Heat-Resistant Steels Enabled by In Situ CSLM Observation[J]. 金属学报, 2024, 60(6): 802-816.
[10] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[11] CHENG Fulai, LUO Xuemei, HU Bingli, ZHANG Bin, ZHANG Guangping. Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery[J]. 金属学报, 2024, 60(4): 522-536.
[12] CHENG Sheng, SUN Yang, ZHAO Wenhui, LUAN Yikun, ZHENG Chengwu, LI Dianzhong. Formation of a Needle-Like Structure when Surface Flaking Occurs During the Rolling Contact Fatigue of a GCr15 Bearing[J]. 金属学报, 2024, 60(4): 425-433.
[13] YANG Ping, MA Dandan, GU Chen, GU Xinfu. Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel[J]. 金属学报, 2024, 60(3): 377-387.
[14] DU Suigeng, WANG Songlin, HU Hongyi. Formation, Structure, and In Situ Cracking of Intermediate Phases in the Friction-Diffusion Double Welding Zone Between TiAl-Based Alloy and GH3039 Alloy[J]. 金属学报, 2024, 60(12): 1637-1646.
[15] LI Zhishang, ZHAO Long, ZONG Hongxiang, DING Xiangdong. Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations[J]. 金属学报, 2024, 60(10): 1388-1404.
No Suggested Reading articles found!