|
|
Phase-Field Simulations of Phase Transformation and Crack Evolution in Zirconium Alloy Oxide Film |
WANG Xiaoqi1,2, ZHANG Jinhu1,2( ), GUO Hui1,2, LI Xuexiong1, XU Haisheng1,2, BAI Chunguang1,2, XU Dongsheng1,2( ), YANG Rui1,2 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
WANG Xiaoqi, ZHANG Jinhu, GUO Hui, LI Xuexiong, XU Haisheng, BAI Chunguang, XU Dongsheng, YANG Rui. Phase-Field Simulations of Phase Transformation and Crack Evolution in Zirconium Alloy Oxide Film. Acta Metall Sin, 2025, 61(7): 1082-1092.
|
Abstract Zirconium alloys are considered as important nuclear reactor structural materials owing to their low thermal neutron absorption cross-section, good corrosion resistance, and good mechanical properties in high-temperature and high-pressure water. However, under high temperature and corrosion conditions, an oxide film forms on the surface of zirconium alloys, and its growth rate increases rapidly when the thickness is 2-3 μm, leading to a transition in corrosion kinetics, which limits its service life in the reactor. In this study, the transformation of zirconia from tetragonal (t-ZrO2) to monoclinic (m-ZrO2) and the crack propagation behavior in the oxidation layer on zirconium alloys have been investigated using phase-field simulation. During the transformation of t-ZrO2 to m-ZrO2 in the oxide film, the t-ZrO2 matrix undergoes compressive and tensile stresses along the long and short axes of the m-ZrO2 precipitate, respectively, whereas the m-ZrO2 precipitate primarily undergoes compressive stress during the transformation. Moreover, the stresses increase with the growth of the m-ZrO2 grains. The simulations of crack evolution reveal that the cracks in the oxidation layer parallel to the oxide-metal interface expand under applied tensile stress perpendicular to the interface. Such cracks may connect with other isolated cracks and defects forming a defect layer. Upon extending to the oxide-metal interface, surface cracks perpendicular to the interface bifurcate in the oxide rather than penetrate into the metal matrix, which facilitates the peeling off of the oxidation layer from the substrate.
|
Received: 05 June 2023
|
|
Fund: National Key Research and Development Program of China(2021YFB3702604);Informatization Program of Chinese Academy of Sciences(CAS-WX2021PY-0103) |
1 |
Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
|
2 |
Motta A T, Couet A, Comstock R J. Corrosion of zirconium alloys used for nuclear fuel cladding [J]. Annu. Rev. Mater. Res., 2015, 45: 311
|
3 |
Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition [J]. J. Nucl. Mater., 2021, 543: 152474
|
4 |
Hu J, Lin W T, Lv Q Y, et al. Oxide formation mechanism of a corrosion-resistant CZ1 zirconium alloy [J]. J. Mater. Sci. Technol., 2023, 147: 6
doi: 10.1016/j.jmst.2022.12.002
|
5 |
Ni N, Hudson D, Wei J, et al. How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys [J]. Acta Mater., 2012, 60: 7132
|
6 |
Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals [J]. Prog. Mater. Sci., 2001, 46: 309
|
7 |
Han E-H. Research trends on micro and nano-scale materials degradation in nuclear power plant [J]. Acta Metall. Sin., 2011, 47: 769
|
|
韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究——进展与趋势 [J]. 金属学报, 2011, 47: 769
doi: 10.3724/SP.J.1037.2011.00441
|
8 |
Kautz E J, Gwalani B, Lambeets S V M, et al. Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation [J]. npj Mater. Degrad., 2020, 4: 29
|
9 |
Wadman B, Andrén H O, Falk L K L. Atom probe analysis of thin oxide layers on zircaloy needles [J]. J. Phys. Colloq., 1989, 50: C8-303
|
10 |
Garner A, Gholinia A, Frankel P, et al. The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy [J]. Acta Mater., 2014, 80: 159
|
11 |
Liao J J, Zhang W, Zhang J S, et al. Periodic densification-transition behavior of Zr-Sn-Nb-Fe-V alloys during uniform corrosion in superheated steam [J]. Acta Metall. Sin., 2023, 59: 289
|
|
廖京京, 张 伟, 张君松 等. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为 [J]. 金属学报, 2023, 59: 289
doi: 10.11900/0412.1961.2021.00214
|
12 |
Gong W J, Zhang H L, Qiao Y, et al. Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4 [J]. Corros. Sci., 2013, 74: 323
|
13 |
Yilmazbayhan A, Breval E, Motta A T, et al. Transmission electron microscopy examination of oxide layers formed on Zr alloys [J]. J. Nucl. Mater., 2006, 349: 265
|
14 |
Lin C, Ruan H H, Shi S Q. Mechanical-chemical coupling phase-field modeling for inhomogeneous oxidation of zirconium induced by stress-oxidation interaction [J]. npj Mater. Degrad., 2020, 4: 22
|
15 |
Zhang H X, Li Z K, Zhang J J, et al. Crystal structure of oxide film of NZ2 alloy corroded in different mediums [J]. Chin. J. Mater. Res., 2008, 22: 327
|
|
章海霞, 李中奎, 张建军 等. NZ2合金在不同介质中腐蚀后氧化膜的晶体结构 [J]. 材料研究学报, 2008, 22: 327
|
16 |
Han E-H, Wang J Q. Effect of surface state on corrosion and stress corrosion for nuclear materials [J]. Acta Metall. Sin., 2023, 59: 513
|
|
韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响 [J]. 金属学报, 2023, 59: 513
doi: 10.11900/0412.1961.2023.00123
|
17 |
Sakuma T. Phase transformation and microstructure of partially-stabilized zirconia [J]. Trans. Jpn. Inst. Met., 1988, 29: 879
|
18 |
Zhao Y H. Understanding and design of metallic alloys guided by phase-field simulations [J]. npj Comput. Mater., 2023, 9: 94
|
19 |
Wolten G M. Diffusionless phase transformations in zirconia and hafnia [J]. J. Am. Ceram. Soc., 1963, 46: 418
|
20 |
Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
|
21 |
Zhao B J, Zhao Y H, Sun Y Y, et al. Effect of Mn composition on the nanometer Cu-rich phase of Fe-Cu-Mn alloy by phase field method [J]. Acta Metall. Sin., 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
|
|
赵宝军, 赵宇宏, 孙远洋 等. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究 [J]. 金属学报, 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
|
22 |
Yang W K, Jiang X A, Tian X L, et al. Phase-field simulation of nano-α′ precipitates under irradiation and dislocations [J]. J. Mater. Res. Technol., 2023, 22: 1307
|
23 |
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
|
24 |
Mamivand M, Asle Zaeem M, El Kadiri H, et al. Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia [J]. Acta Mater., 2013, 61: 5223
|
25 |
Biner S B. Programming Phase-Field Modeling [M]. Switzerland: Springer, 2017: 169
|
26 |
Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites [J]. C. R. Acad. Sci. Paris, 1994, 318: 1417
|
27 |
Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure [J]. Comput. Methods Appl. Mech. Eng., 1998, 157: 69
|
28 |
Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: A computational approach [J]. Comput. Methods Appl. Mech. Eng., 1999, 172: 109
|
29 |
Michel J C, Moulinec H, Suquet P. A computational scheme for linear and non-linear composites with arbitrary phase contrast [J]. Int. J. Numer. Meth. Eng., 2001, 52: 139
|
30 |
Goswami S, Anitescu C, Rabczuk T. Adaptive fourth-order phase field analysis for brittle fracture [J]. Comput. Methods Appl. Mech. Eng., 2020, 361: 112808
|
31 |
Bourdin B, Francfort G A, Marigo J J. The variational approach to fracture [J]. J. Elast., 2008, 91: 5
|
32 |
Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture [J]. J. Mech. Phys. Solids, 2000, 48: 797
|
33 |
Sun X K, Davidson B D. A direct energy balance approach for determining energy release rates in three and four point bend end notched flexure tests [J]. Int. J. Fract., 2005, 135: 51
|
34 |
Zhou B X, Li Q, Yao M Y, et al. Microstructure of oxide films formed on zircaloy-4 [J]. Corros. Prot., 2009, 30: 589
|
|
周邦新, 李 强, 姚美意 等. Zr-4合金氧化膜的显微组织研究 [J]. 腐蚀与防护, 2009, 30: 589
|
35 |
Tejland P, Andrén H O. Origin and effect of lateral cracks in oxide scales formed on zirconium alloys [J]. J. Nucl. Mater., 2012, 430: 64
|
36 |
Vermaak N, Parry G, Estevez R, et al. New insight into crack formation during corrosion of zirconium-based metal-oxide systems [J]. Acta Mater., 2013, 61: 4374
|
37 |
Duriez C, Dupont T, Schmet B, et al. Zircaloy-4 and M5® high temperature oxidation and nitriding in air [J]. J. Nucl. Mater., 2008, 380: 30
|
38 |
Beuzet E, Lamy J S, Bretault A, et al. Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code [J]. Nucl. Eng. Des., 2011, 241: 1217
|
39 |
Zhou B X, Liu W Q, Li Q, et al. Mechanism of LiOH aqueous solution accelerating corrosion rate of zircaloy-4 [J]. Chin. J. Mater. Res., 2004, 18: 225
|
|
周邦新, 刘文庆, 李 强 等. LiOH水溶液提高Zr-4合金腐蚀速率的机理 [J]. 材料研究学报, 2004, 18: 225
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|