Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (7): 1071-1081    DOI: 10.11900/0412.1961.2023.00281
Research paper Current Issue | Archive | Adv Search |
Microstructure and Corrosion Resistance of Modified Mg-5Zn Alloy via Friction Stir Processing
LONG Fei1,2,3, LIU Qu1,2, ZHU Yixing1,2, ZHOU Mengran1,2, CHEN Gaoqiang1,2, SHI Qingyu1,2()
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
3 Henan Key Laboratory of Advanced Conductor Materials, Institute of Materials, Henan Academy of Sciences, Zhengzhou 450046, China
Cite this article: 

LONG Fei, LIU Qu, ZHU Yixing, ZHOU Mengran, CHEN Gaoqiang, SHI Qingyu. Microstructure and Corrosion Resistance of Modified Mg-5Zn Alloy via Friction Stir Processing. Acta Metall Sin, 2025, 61(7): 1071-1081.

Download:  HTML  PDF(2803KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloy is the lightest metal structure material and has one of the highest specific strength among metals. Thus, it has great potential in many applications, such as aerospace and automobile industry, to reduce the weight of components. However, magnesium alloys have very poor corrosion resistance that hinders their industrial application. Thus, several methods have been explored to improve the corrosion resistance of magnesium alloy to promote its application in industries such as automotive, aerospace, and electronics where lightweight materials are required. In this study, friction stir processing (FSP) has been applied to modify the microstructure of Mg-5Zn alloy to increase its corrosion resistance, which is a type of magnesium alloy used widely but has relatively poor corrosion resistance. Herein, three tools with different shoulder diameters of 14, 17, and 20 mm were selected to conduct FSP on the as-cast Mg-5Zn alloy. The microstructure has been observed and corrosion behavior has been investigated. The results reveal that the coarse grains of as-cast Mg-5Zn alloy are considerably refined by FSP treatment. The grain size reduces from hundreds of micrometers to a few micrometers. Furthermore, the coarse secondary phase in as-cast alloy is broken into small particles and distributed uniformly in the base material after FSP. Additionally, strong basal plane (0001) texture and low dislocation density have been observed in these FSP-treated samples, which are beneficial for increasing the corrosion resistance of magnesium alloy. Moreover, the size of the secondary phase increases with the increase of shoulder diameter, which leads to the increase in local cathode/anode area ratio, and the corrosion resistance of the three FSP-treated samples gradually reduces to 1520, 247, and 111 Ω·cm2, respectively. Notably, under the FSP treatment at 800 r/min rotation speed, 40 mm/min traveling speed, and 0.3 mm plunge depth, when the tool with a shoulder diameter of 14 mm is employed, the precipitates in the Mg-5Zn alloy gets sufficiently fragmented and evenly dispersed, along with a relatively low dislocation density. The average corrosion current density of this friction stir processed sample in a 3.5%NaCl aqueous solution is reduced to 4.11 × 10-6 A/cm2 compared to that of the as-cast alloy (3.15 × 10-5 A/cm2).

Key words:  friction stir processing      precipitate      shoulder diameter      corrosion resistance     
Received:  01 July 2023     
ZTFLH:  TB304  
Fund: National Natural Science Foundation of China(52035005);National Natural Science Foundation of China(52175334)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00281     OR     https://www.ams.org.cn/EN/Y2025/V61/I7/1071

Fig.1  OM image (a) and grain size distribution (b) of as-cast Mg-5Zn alloy
Fig.2  Inverse pole figures of Mg-5Zn alloys treated by friction stir processing (FSP) with shoulder diameters of 14 mm (a), 17 mm (b), and 20 mm (c) named FSP-14, FSP-17, and FSP-20, respectively (ND—normal direction, TD—transverse direction)
Fig.3  Backscattered electron (BSE) images of as-cast (a, b) and FSP-14 (c), FSP-17 (d), and FSP-20 (e) Mg-5Zn alloy samples (Fig.3b shows the locally enlarged image of square area in Fig.3a)
Fig.4  XRD spectra of as-cast and FSP-treated Mg-5Zn alloy samples
Fig.5  Hardness variations of FSP-treated Mg-5Zn alloy samples within a 6 mm region on both sides of the center of the stirred zone
Fig.6  Kernel average misorientation (KAM) maps (a, c, e) and corresponding distributions (b, d, f) in the stir zone of FSP-14 (a, b), FSP-17 (c, d), and FSP-20 (e, f) Mg-5Zn alloy samples
Fig.7  Grain boundary distribution maps of FSP-14 (a), FSP-17 (b), and FSP-20 (c) Mg-5Zn alloy samples
Fig.8  Poler figures for the stirred zone of FSP-14 (a), FSP-17 (b), and FSP-20 (c) Mg-5Zn alloy samples
Fig.9  Electrochemical impedance spectroscopy (EIS) diagrams of as-cast and FSP-treated Mg-5Zn alloy samples in 3.5%NaCl solution
(a) Nyquist plots (Zim—imaginary part of the impedance, Zr—real part of the impedance)
(b) Bode plots (|Z|—modulus of impedance)
Fig.10  Equivalent circuit diagram used for impedance fitting
(a) having apparent inductive loop (Rs—solution resistance; R1 and CPE1—resistance and capacitance of the corrosion products generated on the surface, respectively; R2 and CPE2—charge transfer resistance and capacitance of the electrical double layer at the interface, respectively; R3—resistance relative to the local environmental changes near the anode; L1—an inductive component that is used to simulate the changes caused by the expansion of the active anode region)
(b) without apparent inductive loop
Sample

Rs

Ω·cm2

CPE1-T

μΩ-1·cm-2·s-1

CPE1-n

R1

Ω·cm2

CPE2-T

μΩ-1·cm-2·s-1

CPE2-n

R2

Ω·cm2

R3

Ω·cm2

L1

H·cm-2

As-cast5.221.27 × 10-50.937241.85 × 10-30.67889.01926.03714
FSP-143.991.06 × 10-50.959981.87× 10-30.60522.0--
FSP-174.162.88 × 10-50.87102.50 × 10-50.90487.9489.22345
FSP-205.471.06 × 10-40.7836.06 × 10-50.65189.0264.0307
Table 1  Fitting results of EIS for as-cast and FSP-treated Mg-5Zn alloy samples in 3.5%NaCl solution
Fig.11  Polarization curves of as-cast and FSP-treated Mg-5Zn alloy samples in 3.5%NaCl solution (SCE—saturated calomel electrode)
SampleEcorr (vs SCE) / Vicorr / (A·cm2)
As-cast-1.413.15 × 10-5
FSP-14-1.444.11 × 10-6
FSP-17-1.452.85 × 10-5
FSP-20-1.451.10 × 10-4
Table 2  Fitting results of the potentiodynamic polarization curves of as-cast and FSP-treated Mg-5Zn alloy samples in 3.5%NaCl solution
1 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
2 Liu K, Lou F, Fu J J, et al. Microstructure and corrosion behaviors of as-rolled Mg-Zn-Er alloy sheets [J]. Trans. Nonferrous. Met. Soc. China, 2022, 32: 1881
3 Zhou M R, Huang X S, Morisada Y, et al. Effects of Ca and Sr additions on microstructure, mechanical properties, and ignition temperature of hot-rolled Mg-Zn alloy [J]. Mater. Sci. Eng., 2020, A769: 138474
4 Ci W J, Deng L L, Chen X H, et al. Effect of minor Ca addition on microstructure and corrosion behavior of Mg-Y-Ca alloys [J]. J. Mater. Res. Technol., 2023, 26: 7502
5 Sun C, Liu H, Wang C, et al. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance [J]. J. Alloys Compd., 2022, 911: 165046
6 Gao J H, Guan S K, Ren Z W, et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid [J]. Mater. Lett., 2011, 65: 691
7 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, R50: 1
8 Ma Z Y. Friction stir processing technology: A review [J]. Metall. Mater. Trans., 2008, 39A: 642
9 Cao G H, Liu Y X, Zhang D T, et al. Effect of aging treatment on microstructural evolution and mechanical properties of submerged friction stir processed WE43 alloy [J]. Rare Met. Mater. Eng., 2018, 47: 3179
曹耿华, 刘一雄, 张大童 等. 时效热处理对水下搅拌摩擦加工WE43镁合金的微观组织及力学性能的影响 [J]. 稀有金属材料与工程, 2018, 47: 3179
10 Xiao B L, Yang Q, Yang J, et al. Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing [J]. J. Alloys Compd., 2011, 509: 2879
11 Saikrishna N, Pradeep Kumar Reddy G, Munirathinam B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy [J]. J. Magnes. Alloy., 2016, 4: 68
12 Argade G R, Panigrahi S K, Mishra R S, et al. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium [J]. Corros. Sci., 2012, 58: 145
13 Zhang W, Tan L L, Ni D R, et al. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy [J]. J. Mater. Sci. Technol., 2019, 35: 777
doi: 10.1016/j.jmst.2018.11.025
14 Zhang S X, Zhang X N, Zhao C L, et al. Research on an Mg-Zn alloy as a degradable biomaterial [J]. Acta Biomater., 2010, 6: 626
doi: 10.1016/j.actbio.2009.06.028 pmid: 19545650
15 Lu C, Wei Z S, Huang X F, et al. Research and development of heat resistant magnesium alloy [J]. Foundry, 2005, 54: 112
卢 晨, 卫中山, 黄晓锋 等. 耐热镁合金的研究进展 [J]. 铸造, 2005, 54: 112
16 Cai S H, Lei T, Li N F, et al. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys [J]. Mater. Sci. Eng., 2012, C32: 2570
17 Li Y. Study on hot deformation behavior and the effects of friction stir processing on the microstructure and properties of Mg-Li alloys [D]. Jinan: Shandong University, 2022
李 奕. 镁锂合金热变形行为及搅拌摩擦加工对其组织与性能影响研究 [D]. 济南: 山东大学, 2022
18 Yan Z F, Wang D H, He X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect [J]. Mater. Sci. Eng., 2018, A723: 212
19 Baril G, Blanc C, Pebere N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures [J]. J. Electrochem. Soc., 2001, 148: B489
20 Liu W, Cao F, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solution [J]. Corrosion, 2012, 68: 045001
21 Song G L, Atrens A. Understanding magnesium corrosion—A framework for improved alloy performance [J]. Adv. Eng. Mater., 2013, 5: 837
22 Asmussen R M, Binns W J, Jakupi P, et al. Microstructural effects on corrosion of AM50 magnesium alloys [J]. J. Electrochem. Soc., 2014, 161: C501
23 King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
24 Long F, Chen G Q, Zhou M R, et al. Simultaneous enhancement of mechanical properties and corrosion resistance of as-cast Mg-5Zn via microstructural modification by friction stir processing [J]. J. Magnes. Alloy., 2023, 11: 1931
25 Huang Y X, Wang Y B, Meng X C, et al. Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys [J]. J. Mater. Process. Technol., 2017, 249: 331
26 Al-Samman T. Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy [J]. Acta Mater., 2009, 57: 2229
27 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Oxford: Pergamon Press, 1995: 127
28 Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium [J]. Mater. Sci. Eng., 2008, A490: 411
29 Zener C. Private communication to CS Smith [J]. Trans. AIME, 1949, 175: 15
30 Navazani M, Dehghani K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing [J]. J. Mater. Process. Technol., 2016, 229: 439
31 Birbilis N, Ralston K D, Virtanen S, et al. Grain character influences on corrosion of ECAPed pure magnesium [J]. Corros. Eng. Sci. Technol., 2010, 45: 224
32 Hoog C O, Birbilis N, Estrin Y. Corrosion of pure Mg as a function of grain size and processing route [J]. Adv. Eng. Mater., 2008, 10: 579
33 Ralston K D, Birbilis N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66: 075005
34 Song D, Ma A B, Jiang J H, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution [J]. Corros. Sci., 2010, 52: 481
35 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
36 Ahmadkhaniha D, Fedel M, Sohi M H, et al. Corrosion behavior of severely plastic deformed magnesium based alloys: A review [J]. Surf. Eng. Appl. Electrochem., 2017, 53: 439
37 Xin R L, Li B, Li L, et al. Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl [J]. Mater. Des., 2011, 32: 4548
38 Pu Z, Song G L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy [J]. Corros. Sci., 2012, 57: 192
39 Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
40 Long F, Liu Q, Chen G Q, et al. Improved corrosion resistance achieved in a friction stir processed Mg-5Zn-0.3Ca alloy with fragmented precipitates [J]. Corros. Sci., 2022, 208: 110675
41 Liu M, Qiu D, Zhao M C, et al. The effect of crystallographic orientation on the active corrosion of pure magnesium [J]. Scr. Mater., 2008, 58: 421
42 Liu Q, Ma Q X, Chen G Q, et al. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing [J]. Corros. Sci., 2018, 138: 284
43 Cao F Y, Song G L, Atrens A. Corrosion and passivation of magnesium alloys [J]. Corros. Sci., 2016, 111: 835
44 Hamu G B, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloys Compd., 2009, 468: 222
45 Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-Relation between the microstructure and corrosion behavior [J]. Corros. Sci., 2011, 53: 1960
[1] CAI Zhengqing, YIN Dawei, YANG Liang, WANG Wenxiang, WANG Feilong, WEN Yongqing, MA Mingzhen. Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys[J]. 金属学报, 2025, 61(4): 572-582.
[2] FU Hui, SUN Yong, ZOU Guodong, ZHANG Fan, YANG Xusheng, ZHANG Tao, PENG Qiuming. Research Progress in High-Performance Ultrahigh-Pressure Treated Magnesium Alloys[J]. 金属学报, 2025, 61(3): 475-487.
[3] MENG Ze, LI Guangqiang, LI Tengfei, ZHENG Qing, ZENG Bin, LIU Yu. Effect of Ce on Cleanliness, Microstructure, and Pitting Corrosion Resistance of 75Cr1 Steel[J]. 金属学报, 2024, 60(9): 1229-1238.
[4] KE Yubin, LI Bin, DUAN Huiping. Morphology and Chemical Composition of Nanoprecipitate in AerMet100 Steel by Separation of the Nuclear and Magnetic Small-Angle Neutron Scattering Data[J]. 金属学报, 2024, 60(8): 1109-1118.
[5] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
[6] LI Longjian, LI Rengeng, ZHANG Jiajun, CAO Xinghao, KANG Huijun, WANG Tongmin. Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy[J]. 金属学报, 2024, 60(3): 405-416.
[7] YANG Binbin, SONG Yuanyuan, HAO Long, JIANG Haichang, RONG Lijian. Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition[J]. 金属学报, 2024, 60(12): 1656-1666.
[8] ZHOU Xiaowei, JING Xueyan, FU Ruixue, WANG Yuxin. Codeposition Behaviors and Anti-Corrosive Mechanism of Ni-Co-Zn Ternary Alloys[J]. 金属学报, 2024, 60(11): 1499-1511.
[9] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[10] ZENG Yunpeng, YAN Wei, SHI Xianbo, YAN Maocheng, SHAN Yiyin, YANG Ke. Effect of Copper Content on the MIC Resistance in Pipeline Steel[J]. 金属学报, 2024, 60(1): 43-56.
[11] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[12] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[13] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[14] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[15] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
No Suggested Reading articles found!