|
|
Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery |
CHENG Fulai1,2, LUO Xuemei1( ), HU Bingli1,2, ZHANG Bin3, ZHANG Guangping1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
|
Cite this article:
CHENG Fulai, LUO Xuemei, HU Bingli, ZHANG Bin, ZHANG Guangping. Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery. Acta Metall Sin, 2024, 60(4): 522-536.
|
Abstract With the rapid development of high-performance and high-energy-density lithium-ion batteries, lightweight current collector metal foils for lithium-ion batteries have become a crucial direction of industrial technological advancements. As the thickness of the current collector decreases, the fatigue failure problem becomes increasingly prominent. Once the fatigue failure of the current collector occurs, it will have a catastrophic impact on the electrochemical and safety performances of lithium-ion batteries. Here, to further clarify the fatigue damage mechanism of current collector foils, the high cycle fatigue strength and fatigue failure behavior of current collector Cu and Al foils for lithium-ion batteries under cyclic loading were experimentally investigated using tensile-tensile fatigue test and the EBSD technique. Results show that the fatigue cracks of the Cu foils mainly originate from the slip bands with larger grain sizes and propagate along the slip bands. Based on the microstructure observation and analysis of damaged grains, a statistical relationship between fatigue crack initiation and microstructure (grain size and its coefficient of variation, grain orientation, and Schmid factor (Ω)) of the Cu foils was obtained. Due to the presence of rolled defects on the surface of Al foils, the fatigue cracks are preferentially initiated at the surface defects. Extreme value statistics accurately predicted the possible defect population and the largest defect size in the Al foils, and the relationship between the defect size and fatigue limit was established using the Kitagawa-Takahashi diagram.
|
Received: 14 October 2022
|
|
Fund: National Natural Science Foundation of China(52071319) |
Corresponding Authors:
ZHANG Guangping, professor, Tel:(024)23971938, E-mail: gpzhang@imr.ac.cn;
LUO Xuemei, associate professor, Tel:(024)83978029, E-mail: xmluo@imr.ac.cn
|
1 |
Zhang J Q, Lu B, Song Y C, et al. Diffusion induced stress in layered Li-ion battery electrode plates[J]. J. Power Sources, 2012, 209: 220
doi: 10.1016/j.jpowsour.2012.02.104
|
2 |
Song Y C, Li Z Z, Zhang J Q. Reducing diffusion induced stress in planar electrodes by plastic shakedown and cyclic plasticity of current collector[J]. J. Power Sources, 2014, 263: 22
doi: 10.1016/j.jpowsour.2014.04.007
|
3 |
He Y L, Hu H J, Song Y C, et al. Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes[J]. J. Power Sources, 2014, 248: 517
doi: 10.1016/j.jpowsour.2013.09.118
|
4 |
Suresh S. Fatigue of Materials[M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 95
|
5 |
Thompson N, Wadsworth N, Louat N. The origin of fatigue fracture in copper[J]. Philos. Mag., 1956, 1: 113
doi: 10.1080/14786435608238086
|
6 |
Grosskreutz J C, Waldow P. Substructure and fatigue fracture in aluminum[J]. Acta Metall., 1963, 11: 717
doi: 10.1016/0001-6160(63)90009-9
|
7 |
Boettner R C, McEvily A J, Liu Y C. On the formation of fatigue cracks at twin boundaries[J]. Philos. Mag., 1964, 10: 95
|
8 |
Dai C Y, Zhang B, Xu J, et al. On size effects on fatigue properties of metal foils at micrometer scales[J]. Mater. Sci. Eng., 2013, A575: 217
|
9 |
Wan H Y, Chen G F, Li C P, et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. J. Mater. Sci. Technol., 2019, 35: 1137
doi: 10.1016/j.jmst.2018.12.011
|
10 |
Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Prog. Mater. Sci., 2021, 117: 100724
doi: 10.1016/j.pmatsci.2020.100724
|
11 |
Tang M, Pistorius P C. Fatigue life prediction for AlSi10Mg components produced by selective laser melting[J]. Int. J. Fatigue, 2019, 125: 479
doi: 10.1016/j.ijfatigue.2019.04.015
|
12 |
Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. Int. J. Fatigue, 2021, 151: 106317
doi: 10.1016/j.ijfatigue.2021.106317
|
13 |
Atxaga G, Pelayo A, Irisarri A M. Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy[J]. Mater. Sci. Technol., 2001, 17: 446
doi: 10.1179/026708301101510023
|
14 |
Jiang H, Bowen P, Knott J F. Fatigue performance of a cast aluminium alloy Al-7Si-Mg with surface defects[J]. J. Mater. Sci., 1999, 34: 719
doi: 10.1023/A:1004560510632
|
15 |
El Khoukhi D, Morel F, Saintier N, et al. Probabilistic modeling of the size effect and scatter in high cycle fatigue using a Monte-Carlo approach: Role of the defect population in cast aluminum alloys[J]. Int. J. Fatigue, 2021, 147: 106177
doi: 10.1016/j.ijfatigue.2021.106177
|
16 |
Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. Int. J. Fatigue, 2017, 94: 178
doi: 10.1016/j.ijfatigue.2016.06.020
|
17 |
Gong H J, Rafi K, Gu H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Mater. Des., 2015, 86: 545
doi: 10.1016/j.matdes.2015.07.147
|
18 |
Dezecot S, Maurel V, Buffiere J Y, et al. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy[J]. Acta Mater., 2017, 123: 24
doi: 10.1016/j.actamat.2016.10.028
|
19 |
Murakami Y. Material defects as the basis of fatigue design[J]. Int. J. Fatigue, 2012, 41: 2
doi: 10.1016/j.ijfatigue.2011.12.001
|
20 |
Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size[J]. Int. J. Fatigue, 1989, 11: 299
doi: 10.1016/0142-1123(89)90055-8
|
21 |
Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. Int. J. Fatigue, 2019, 125: 210
doi: 10.1016/j.ijfatigue.2019.04.002
|
22 |
Zerbst U, Bruno G, Buffière J Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges[J]. Prog. Mater. Sci., 2021, 121: 100786
doi: 10.1016/j.pmatsci.2021.100786
|
23 |
Li P. Investigation on the cyclic deformation behaviors of face-centered cubic crystals[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
|
|
李 鹏. 面心立方晶体循环形变行为研究[D]. 沈阳: 中国科学院金属研究所, 2009
|
24 |
An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
|
25 |
Wong M, Kao W, Lui J, et al. Cyclic deformation of ultrafine-grained aluminum[J]. Acta Mater., 2007, 55: 715
doi: 10.1016/j.actamat.2006.09.002
|
26 |
Zhang Z J, Zhang P, Zhang Z F. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys[J]. Acta Mater., 2016, 121: 331
doi: 10.1016/j.actamat.2016.09.020
|
27 |
An X H, Lin Q Y, Wu S D, et al. Improved fatigue strengths of nanocrystalline Cu and Cu Al alloys[J]. Mater. Res. Lett., 2015, 3: 135
doi: 10.1080/21663831.2015.1029645
|
28 |
Glushko O, Kiener D. Initiation of fatigue damage in ultrafine grained metal films[J]. Acta Mater., 2021, 206: 116599
doi: 10.1016/j.actamat.2020.116599
|
29 |
Mönig R. Thermal fatigue of Cu thin films[D]. Stuttgart: Universität Stuttgart, 2005
|
30 |
Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films[J]. Acta Mater., 2003, 51: 195
doi: 10.1016/S1359-6454(02)00391-9
|
31 |
Stinville J C, Vanderesse N, Bridier F, et al. High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy[J]. Acta Mater., 2015, 98: 29
doi: 10.1016/j.actamat.2015.07.016
|
32 |
Stinville J C, Lenthe W C, Miao J, et al. A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy[J]. Acta Mater., 2016, 103: 461
doi: 10.1016/j.actamat.2015.09.050
|
33 |
Stinville J C, Lenthe W C, Echlin M P, et al. Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base superalloys[J]. Int. J. Fract., 2017, 208: 221
doi: 10.1007/s10704-017-0241-z
|
34 |
Dai C Y, Zhang G P, Yan C. Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philos. Mag., 2011, 91: 932
doi: 10.1080/14786435.2010.538017
|
35 |
Judelewicz M. Cyclic deformation of 100 μm thin polycrystalline copper foils[J]. Scr. Metall. Mater., 1993, 29: 1463
doi: 10.1016/0956-716X(93)90337-R
|
36 |
Judelewicz M, Künzi H U, Merk N, et al. Microstructural development during fatigue of copper foils 20-100 μm thick[J]. Mater. Sci. Eng., 1994, A186: 135
|
37 |
Hong S, Weil R. Low cycle fatigue of thin copper foils[J]. Thin Solid Films, 1996, 283: 175
doi: 10.1016/0040-6090(95)08225-5
|
38 |
Kammuri K, Kitamura M, Fujii T, et al. Effects of thickness and crystallographic orientation on fatigue life of single-crystalline copper foils[J]. Mater. Trans., 2015, 56: 200
doi: 10.2320/matertrans.M2014352
|
39 |
Lavenstein S, Gu Y J, Madisetti D, et al. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale[J]. Science, 2020, 370: eabb2690
doi: 10.1126/science.abb2690
|
40 |
Xu K N, Song Y C, Lu B, et al. Design of ultrathin current collectors via cyclically plastic yield for fabrication of high capacity lithium ion batteries[J]. J. Electrochem. Soc., 2020, 167: 110557
doi: 10.1149/1945-7111/aba702
|
41 |
Mughrabi H, Höppel H W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys[J]. Int. J. Fatigue, 2010, 32: 1413
doi: 10.1016/j.ijfatigue.2009.10.007
|
42 |
Saitova L R, Höppel H W, Göken M, et al. Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use[J]. Int. J. Fatigue, 2009, 31: 322
doi: 10.1016/j.ijfatigue.2008.08.007
|
43 |
Hall E O. Variation of hardness of metals with grain size[J]. Nature, 1954, 173: 948
|
44 |
Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163
doi: 10.1016/0142-1123(94)90001-9
|
45 |
Cortes C, Vapnik V. Support-vector networks[J]. Mach. Learn., 1995, 20: 273
|
46 |
Ding S F, An Y X, Zhang X K, et al. Wavelet twin support vector machines based on glowworm swarm optimization[J]. Neurocomputing, 2017, 225: 157
doi: 10.1016/j.neucom.2016.11.026
|
47 |
Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 122
|
|
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 122
|
48 |
Calzada M E, Scariano S M. A synthetic control chart for the coefficient of variation[J]. J. Stat. Comput. Sim., 2013, 83: 853
doi: 10.1080/00949655.2011.639772
|
49 |
Krishnamoorthy K, Lee M. Improved tests for the equality of normal coefficients of variation[J]. Computation. Stat., 2014, 29: 215
|
50 |
Chen H L, Luo X M, Wang D, et al. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications[J]. J. Mater. Sci. Technol., 2021, 89: 107
doi: 10.1016/j.jmst.2021.02.025
|
51 |
Zhao P, Chen B, Kelleher J, et al. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium[J]. Acta Mater., 2019, 174: 29
doi: 10.1016/j.actamat.2019.05.038
|
52 |
Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials[J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21: 1049
doi: 10.1046/j.1460-2695.1998.00104.x
|
53 |
El Haddad M H, Topper T H, Smith K N. Prediction of non propagating cracks[J]. Eng. Fract. Mech., 1979, 11: 573
doi: 10.1016/0013-7944(79)90081-X
|
54 |
Herold H, Streitenberger M, Zinke M, et al. An experimental and theoretical approach for an estimation of ΔKth [J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 805
doi: 10.1046/j.1460-2695.2000.00314.x
|
55 |
Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Mater. Sci. Eng., 2013, A564: 331
|
56 |
Wang B B, Wu L H, Xue P, et al. Improved high cycle fatigue property of ultrafine grained pure aluminum[J]. Mater. Lett., 2020, 277: 128289
doi: 10.1016/j.matlet.2020.128289
|
57 |
Lee Y K, O'Keefe T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM, 2002, 54(4): 37
|
58 |
Kondo K, Murakami H. Crystal growth of electrolytic Cu foil[J]. J. Electrochem. Soc., 2004, 151: C514
doi: 10.1149/1.1756883
|
59 |
Lin Y M, Yen S C. Effects of additives and chelating agents on electroless copper plating[J]. Appl. Surf. Sci., 2001, 178: 116
doi: 10.1016/S0169-4332(01)00306-3
|
60 |
Liao Z Y, Yang S T. Analysis and discussion on effect factors of aluminum foil rolling process[J]. Nonferrous Met. Process., 2014, 43(1): 21
|
|
廖志宇, 杨松涛. 铝箔轧制工艺影响因素的分析与探讨[J]. 有色金属加工, 2014, 43(1): 21
|
61 |
Niu M, Zhao G H. Effect of aluminium stock quality on aluminium foil rolling and aluminium foil quality[J]. Light Alloy Fabr. Technol., 2003, 31(12): 20
|
|
牛 猛, 赵光辉. 铝箔毛料质量对铝箔轧制生产的影响[J]. 轻合金加工技术, 2003, 31(12): 20
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|