Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 522-536    DOI: 10.11900/0412.1961.2022.00523
Research paper Current Issue | Archive | Adv Search |
Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery
CHENG Fulai1,2, LUO Xuemei1(), HU Bingli1,2, ZHANG Bin3, ZHANG Guangping1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

CHENG Fulai, LUO Xuemei, HU Bingli, ZHANG Bin, ZHANG Guangping. Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery. Acta Metall Sin, 2024, 60(4): 522-536.

Download:  HTML  PDF(3694KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of high-performance and high-energy-density lithium-ion batteries, lightweight current collector metal foils for lithium-ion batteries have become a crucial direction of industrial technological advancements. As the thickness of the current collector decreases, the fatigue failure problem becomes increasingly prominent. Once the fatigue failure of the current collector occurs, it will have a catastrophic impact on the electrochemical and safety performances of lithium-ion batteries. Here, to further clarify the fatigue damage mechanism of current collector foils, the high cycle fatigue strength and fatigue failure behavior of current collector Cu and Al foils for lithium-ion batteries under cyclic loading were experimentally investigated using tensile-tensile fatigue test and the EBSD technique. Results show that the fatigue cracks of the Cu foils mainly originate from the slip bands with larger grain sizes and propagate along the slip bands. Based on the microstructure observation and analysis of damaged grains, a statistical relationship between fatigue crack initiation and microstructure (grain size and its coefficient of variation, grain orientation, and Schmid factor (Ω)) of the Cu foils was obtained. Due to the presence of rolled defects on the surface of Al foils, the fatigue cracks are preferentially initiated at the surface defects. Extreme value statistics accurately predicted the possible defect population and the largest defect size in the Al foils, and the relationship between the defect size and fatigue limit was established using the Kitagawa-Takahashi diagram.

Key words:  high cycle fatigue      crack initiation      ultrathin foil      Kitagawa-Takahashi diagram      current collector      lithium-ion battery     
Received:  14 October 2022     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(52071319)
Corresponding Authors:  ZHANG Guangping, professor, Tel:(024)23971938, E-mail: gpzhang@imr.ac.cn;
LUO Xuemei, associate professor, Tel:(024)83978029, E-mail: xmluo@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00523     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/522

Fig.1  SEM images of surface morphologies (a, b), TEM images of microstructures (c, d), and grain size distributions (e, f) of Cu foils with thicknesses of 6 μm (a, c, e) and 8 μm (b, d, f)
Fig.2  Engineering stress-strain (a) and stress amplitude-fatigue life (b) curves of Cu foils with different thicknesses (The arrows indicate that the specimen is not failure under this stress amplitude and cycle)
Fig.3  Microstructures and damage features of fatigue damage initiation sites in 8 μm-thick Cu foils under a stress amplitude of 92 MPa and fatigue life of 4 × 106 cyc (The arrows in Figs.4a-c represent fatigue damage sites. Black and white lines in Figs.4b and c are grain boundaries and twin boundaries, respectively)
(a) SEM image (LD—loading direction) (b) EBSD grain orientation map (ND—normal direction)
(c) Schmid factor map (d) post-fatigue TEM image
(e, f) inverse pole figures depicting the orientations of parent and twin grains associated with the fatigue damage in the surface ND (e) and LD (f), respectively

Slip

system

(1¯11)(111)(111¯)(1¯11¯)
[011¯][1¯01¯][110][011¯][1¯01][1¯10][011][1¯01¯][1¯10][110][1¯01][011]
Parent0.4970.200.300.220.060.280.230.110.340.320.160.48
Twin0.190.040.150.350.150.200.300.150.450.4970.260.24
Table 1  Schmid factors (Ω) for the 12 slip systems of a pair of parent and twin in Fig.3b (Bold values indicate maximum Schmid factors (Ωmax))
Fig.4  SEM images of surface morphologies (a, b), TEM images of microstructures (c, d), and grain size distributions (e, f) of Al foils with thicknesses of 10 μm (a, c, e) and 13 μm (b, d, f)
Fig.5  Engineering stress-strain (a) and stress amplitude-fatigue life (b) curves of Al foils with different thicknesses (The arrows indicate that the specimen is not failure under this stress amplitude and cycle)
Fig.6  3D topography, schematic of surface defect, and distributions of defect size and defect parameter (area) for Al foils with different thicknesses
(a) 3D laser confocal image
(b) schematic of surface defect and the cross-sectional morphology along the AA' line
(c-f) distributions of defect size (c, d) and defect parameter (area) (e, f) of 10 μm (c, e) and 13 μm (d, f) Al, respectively (ddepth—defect depth, dlength—defect length, dwidth—defect width)
Fig.7  Surface damage morphology (a) and high magnified (b) SEM images, and EBSD characterization (c) of 13 μm-thick Al foils under a stress amplitude of 64 MPa and fatigue life of 1.4 × 106 cyc (Black line, gray line, and red line in Fig.7c represent high angle grain boundaries (> 10°), low angle grain boundaries (2°~10°), and crack propagation path, respectively)
Fig.8  Grain configurations favoring fatigue crack initiation for Cu foils
(a) grain size, maximum Schmid factor (Ωmax), and normalized elastic modulus difference of the twin and parent grain pairs which present crack initiation and no crack initiation
(b) grain size (D) and Ωmax of the twin and parent grain pairs which present crack initiation and no crack initiation
Fig.9  Schematic of damage grain and surrounding grain inhomogeneity (a) and characteristics of grain inhomogeneity favorable to crack initiation (b) (All grains presenting crack initiation and no crack initiation have a high Ωmax (≥ 0.44), large grain size (≥ 5 μm), and grain orientation close to <100>ND. γ—coefficient of variation)
Fig.10  Extreme value statistics predicting maximum defect size
(a) linear fitting for parameters of Gumbel function for Al foils with different thicknesses (areai—Murakami defect size parameter, G(areai)—cumulative probability of defect size)
(b) prediction of the maximum defect size under 95% probability
Fig.11  Kitagawa-Takahashi diagram of the Al foils with different thicknesses described by the El-Haddad formulation considering the expected defect distribution (Data points of the black rhombus and blue circle are the experimental fatigue limit (from Fig.5b), and shaded areas of black and blue lines are the cumulative probability of defect size (from Fig.10b) for Al foils with thicknesses of 10 and 13 μm, respectively; R—fatigue stress ratio; area0—intrinsic defect size)
ThicknessPredictedExperimental
μm

G(area)

%

areamax
μm

σw

MPa

σw

MPa

Deviation

%

10956.135149+4.1
13955.135354-1.9
Table 2  Fatigue limit predictions (from Fig.11) and experimental results (from Fig.5b) of Al foils with thicknesses of 10 and 13 μm
1 Zhang J Q, Lu B, Song Y C, et al. Diffusion induced stress in layered Li-ion battery electrode plates[J]. J. Power Sources, 2012, 209: 220
doi: 10.1016/j.jpowsour.2012.02.104
2 Song Y C, Li Z Z, Zhang J Q. Reducing diffusion induced stress in planar electrodes by plastic shakedown and cyclic plasticity of current collector[J]. J. Power Sources, 2014, 263: 22
doi: 10.1016/j.jpowsour.2014.04.007
3 He Y L, Hu H J, Song Y C, et al. Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes[J]. J. Power Sources, 2014, 248: 517
doi: 10.1016/j.jpowsour.2013.09.118
4 Suresh S. Fatigue of Materials[M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 95
5 Thompson N, Wadsworth N, Louat N. The origin of fatigue fracture in copper[J]. Philos. Mag., 1956, 1: 113
doi: 10.1080/14786435608238086
6 Grosskreutz J C, Waldow P. Substructure and fatigue fracture in aluminum[J]. Acta Metall., 1963, 11: 717
doi: 10.1016/0001-6160(63)90009-9
7 Boettner R C, McEvily A J, Liu Y C. On the formation of fatigue cracks at twin boundaries[J]. Philos. Mag., 1964, 10: 95
8 Dai C Y, Zhang B, Xu J, et al. On size effects on fatigue properties of metal foils at micrometer scales[J]. Mater. Sci. Eng., 2013, A575: 217
9 Wan H Y, Chen G F, Li C P, et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. J. Mater. Sci. Technol., 2019, 35: 1137
doi: 10.1016/j.jmst.2018.12.011
10 Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Prog. Mater. Sci., 2021, 117: 100724
doi: 10.1016/j.pmatsci.2020.100724
11 Tang M, Pistorius P C. Fatigue life prediction for AlSi10Mg components produced by selective laser melting[J]. Int. J. Fatigue, 2019, 125: 479
doi: 10.1016/j.ijfatigue.2019.04.015
12 Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. Int. J. Fatigue, 2021, 151: 106317
doi: 10.1016/j.ijfatigue.2021.106317
13 Atxaga G, Pelayo A, Irisarri A M. Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy[J]. Mater. Sci. Technol., 2001, 17: 446
doi: 10.1179/026708301101510023
14 Jiang H, Bowen P, Knott J F. Fatigue performance of a cast aluminium alloy Al-7Si-Mg with surface defects[J]. J. Mater. Sci., 1999, 34: 719
doi: 10.1023/A:1004560510632
15 El Khoukhi D, Morel F, Saintier N, et al. Probabilistic modeling of the size effect and scatter in high cycle fatigue using a Monte-Carlo approach: Role of the defect population in cast aluminum alloys[J]. Int. J. Fatigue, 2021, 147: 106177
doi: 10.1016/j.ijfatigue.2021.106177
16 Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. Int. J. Fatigue, 2017, 94: 178
doi: 10.1016/j.ijfatigue.2016.06.020
17 Gong H J, Rafi K, Gu H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Mater. Des., 2015, 86: 545
doi: 10.1016/j.matdes.2015.07.147
18 Dezecot S, Maurel V, Buffiere J Y, et al. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy[J]. Acta Mater., 2017, 123: 24
doi: 10.1016/j.actamat.2016.10.028
19 Murakami Y. Material defects as the basis of fatigue design[J]. Int. J. Fatigue, 2012, 41: 2
doi: 10.1016/j.ijfatigue.2011.12.001
20 Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size[J]. Int. J. Fatigue, 1989, 11: 299
doi: 10.1016/0142-1123(89)90055-8
21 Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. Int. J. Fatigue, 2019, 125: 210
doi: 10.1016/j.ijfatigue.2019.04.002
22 Zerbst U, Bruno G, Buffière J Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges[J]. Prog. Mater. Sci., 2021, 121: 100786
doi: 10.1016/j.pmatsci.2021.100786
23 Li P. Investigation on the cyclic deformation behaviors of face-centered cubic crystals[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
李 鹏. 面心立方晶体循环形变行为研究[D]. 沈阳: 中国科学院金属研究所, 2009
24 An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
25 Wong M, Kao W, Lui J, et al. Cyclic deformation of ultrafine-grained aluminum[J]. Acta Mater., 2007, 55: 715
doi: 10.1016/j.actamat.2006.09.002
26 Zhang Z J, Zhang P, Zhang Z F. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys[J]. Acta Mater., 2016, 121: 331
doi: 10.1016/j.actamat.2016.09.020
27 An X H, Lin Q Y, Wu S D, et al. Improved fatigue strengths of nanocrystalline Cu and Cu Al alloys[J]. Mater. Res. Lett., 2015, 3: 135
doi: 10.1080/21663831.2015.1029645
28 Glushko O, Kiener D. Initiation of fatigue damage in ultrafine grained metal films[J]. Acta Mater., 2021, 206: 116599
doi: 10.1016/j.actamat.2020.116599
29 Mönig R. Thermal fatigue of Cu thin films[D]. Stuttgart: Universität Stuttgart, 2005
30 Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films[J]. Acta Mater., 2003, 51: 195
doi: 10.1016/S1359-6454(02)00391-9
31 Stinville J C, Vanderesse N, Bridier F, et al. High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy[J]. Acta Mater., 2015, 98: 29
doi: 10.1016/j.actamat.2015.07.016
32 Stinville J C, Lenthe W C, Miao J, et al. A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy[J]. Acta Mater., 2016, 103: 461
doi: 10.1016/j.actamat.2015.09.050
33 Stinville J C, Lenthe W C, Echlin M P, et al. Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base superalloys[J]. Int. J. Fract., 2017, 208: 221
doi: 10.1007/s10704-017-0241-z
34 Dai C Y, Zhang G P, Yan C. Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philos. Mag., 2011, 91: 932
doi: 10.1080/14786435.2010.538017
35 Judelewicz M. Cyclic deformation of 100 μm thin polycrystalline copper foils[J]. Scr. Metall. Mater., 1993, 29: 1463
doi: 10.1016/0956-716X(93)90337-R
36 Judelewicz M, Künzi H U, Merk N, et al. Microstructural development during fatigue of copper foils 20-100 μm thick[J]. Mater. Sci. Eng., 1994, A186: 135
37 Hong S, Weil R. Low cycle fatigue of thin copper foils[J]. Thin Solid Films, 1996, 283: 175
doi: 10.1016/0040-6090(95)08225-5
38 Kammuri K, Kitamura M, Fujii T, et al. Effects of thickness and crystallographic orientation on fatigue life of single-crystalline copper foils[J]. Mater. Trans., 2015, 56: 200
doi: 10.2320/matertrans.M2014352
39 Lavenstein S, Gu Y J, Madisetti D, et al. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale[J]. Science, 2020, 370: eabb2690
doi: 10.1126/science.abb2690
40 Xu K N, Song Y C, Lu B, et al. Design of ultrathin current collectors via cyclically plastic yield for fabrication of high capacity lithium ion batteries[J]. J. Electrochem. Soc., 2020, 167: 110557
doi: 10.1149/1945-7111/aba702
41 Mughrabi H, Höppel H W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys[J]. Int. J. Fatigue, 2010, 32: 1413
doi: 10.1016/j.ijfatigue.2009.10.007
42 Saitova L R, Höppel H W, Göken M, et al. Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use[J]. Int. J. Fatigue, 2009, 31: 322
doi: 10.1016/j.ijfatigue.2008.08.007
43 Hall E O. Variation of hardness of metals with grain size[J]. Nature, 1954, 173: 948
44 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163
doi: 10.1016/0142-1123(94)90001-9
45 Cortes C, Vapnik V. Support-vector networks[J]. Mach. Learn., 1995, 20: 273
46 Ding S F, An Y X, Zhang X K, et al. Wavelet twin support vector machines based on glowworm swarm optimization[J]. Neurocomputing, 2017, 225: 157
doi: 10.1016/j.neucom.2016.11.026
47 Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 122
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 122
48 Calzada M E, Scariano S M. A synthetic control chart for the coefficient of variation[J]. J. Stat. Comput. Sim., 2013, 83: 853
doi: 10.1080/00949655.2011.639772
49 Krishnamoorthy K, Lee M. Improved tests for the equality of normal coefficients of variation[J]. Computation. Stat., 2014, 29: 215
50 Chen H L, Luo X M, Wang D, et al. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications[J]. J. Mater. Sci. Technol., 2021, 89: 107
doi: 10.1016/j.jmst.2021.02.025
51 Zhao P, Chen B, Kelleher J, et al. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium[J]. Acta Mater., 2019, 174: 29
doi: 10.1016/j.actamat.2019.05.038
52 Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials[J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21: 1049
doi: 10.1046/j.1460-2695.1998.00104.x
53 El Haddad M H, Topper T H, Smith K N. Prediction of non propagating cracks[J]. Eng. Fract. Mech., 1979, 11: 573
doi: 10.1016/0013-7944(79)90081-X
54 Herold H, Streitenberger M, Zinke M, et al. An experimental and theoretical approach for an estimation of ΔKth [J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 805
doi: 10.1046/j.1460-2695.2000.00314.x
55 Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Mater. Sci. Eng., 2013, A564: 331
56 Wang B B, Wu L H, Xue P, et al. Improved high cycle fatigue property of ultrafine grained pure aluminum[J]. Mater. Lett., 2020, 277: 128289
doi: 10.1016/j.matlet.2020.128289
57 Lee Y K, O'Keefe T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM, 2002, 54(4): 37
58 Kondo K, Murakami H. Crystal growth of electrolytic Cu foil[J]. J. Electrochem. Soc., 2004, 151: C514
doi: 10.1149/1.1756883
59 Lin Y M, Yen S C. Effects of additives and chelating agents on electroless copper plating[J]. Appl. Surf. Sci., 2001, 178: 116
doi: 10.1016/S0169-4332(01)00306-3
60 Liao Z Y, Yang S T. Analysis and discussion on effect factors of aluminum foil rolling process[J]. Nonferrous Met. Process., 2014, 43(1): 21
廖志宇, 杨松涛. 铝箔轧制工艺影响因素的分析与探讨[J]. 有色金属加工, 2014, 43(1): 21
61 Niu M, Zhao G H. Effect of aluminium stock quality on aluminium foil rolling and aluminium foil quality[J]. Light Alloy Fabr. Technol., 2003, 31(12): 20
牛 猛, 赵光辉. 铝箔毛料质量对铝箔轧制生产的影响[J]. 轻合金加工技术, 2003, 31(12): 20
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[4] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[5] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[6] Hanqing LIU, Chao HE, Zhiyong HUANG, Qingyuan WANG. Very High Cycle Fatigue Failure Mechanism of TC17 Alloy[J]. 金属学报, 2017, 53(9): 1047-1054.
[7] Lina ZHU,Caiyan DENG,Dongpo WANG,Shengsun HU. EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(5): 583-591.
[8] Shiwei HAN, Duoqi SHI, Xiaoguang YANG, Guolei MIAO. COMPUTATIONAL STUDY ON MICROSTRUCTURE-SENSITIVE HIGH CYCLE FATIGUE DISPERSIVITY[J]. 金属学报, 2016, 52(3): 289-297.
[9] Hongsheng DING, Zibo SHANG, Yongzhe WANG, Ruirun CHEN, Jingjie GUO, Hengzhi FU. TENSILE AND HIGH CYCLE FATIGUE PROPERTIES OF Ti-47Al-2Cr-2Nb DIRECTIONALLY SOLIDIFIED BY COLD CRUCIBLE METHOD[J]. 金属学报, 2015, 51(5): 569-579.
[10] Li WANG,Zhongjiao ZHOU,Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE[J]. 金属学报, 2015, 51(10): 1273-1278.
[11] YANG Jinxia, SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-BASED SUPERALLOY WITH REFINED GRAINS[J]. 金属学报, 2014, 50(7): 839-844.
[12] YU Long, SONG Xiping, ZHANG Min, LI Hongliang, JIAO Zehui, YU Huichen. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. 金属学报, 2014, 50(10): 1253-1259.
[13] HAN Guoming ZHANG Zhenxing LI Jinguo JIN Tao SUN Xiaofeng HU Zhuangqi. HIGH CYCLE FATIGUE BEHAVIOR OF A NICKEL–BASED SINGLE CRYSTAL SUPERALLOY DD98M AT 900  ℃[J]. 金属学报, 2012, 48(2): 170-175.
[14] WANG Zhiying WANG Jianqiu HAN En–hou KE Wei YAN Maocheng ZHANG Junwei LIU Chuwei . STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING[J]. 金属学报, 2012, 48(10): 1267-1272.
[15] LIU Enze ZHENG Zhi TONG Jian NING Likui GUAN Xiurong. STUDY ON HIGH CYCLE FATIGUE PROPERTIES OF DZ468 SUPERALLOY[J]. 金属学报, 2010, 46(6): 708-714.
No Suggested Reading articles found!