|
|
|
| Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu |
WAN Tao1,2, CHENG Zhao1, LU Lei1( ) |
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu. Acta Metall Sin, 2023, 59(4): 567-576.
|
|
|
Abstract Laminated metals have the potential for achieving better mechanical properties, such as higher strength, ductility, and work hardening ability. The mechanism that leads to these advances stems from the inhomogeneous plastic deformations between soft and hard components where geometrically necessary dislocations (GNDs) are produced while the two adjacent components are mutually constrained. Many structural factors have already been extensively investigated during the optimization of the laminated structure, such as the effect of layer thickness and the strength differential between components on the overall resulting properties. However, the effect of component composition percentage, an important factor for laminated structures, on the mechanical properties and its underlying mechanism remains elusive. To unravel the effect of component composition percentage on the mechanical properties, we used stable nanotwinned structures as components to build laminated nanotwinned (LNT) Cu materials. Three LNT Cu samples with hard components on the surface layers and soft components in the core layer were designed and prepared by direct-current electrodeposition. The soft component percentages were set as 10%, 50%, and 90%. The mechanical behaviors of LNT Cu were explored by uniaxial tensile tests at room temperature. Yield strengths for all three LNT Cu were higher than that estimated by the rule of mixture, indicating an extra strengthening effect from the LNT structure. The LNT Cu containing 50% soft component (LNT-50%) demonstrated the greatest extra strengthening. Interestingly, full-field strain measurements and microstructure characterizations further indicated that the strain localization of LNT-50% was well suppressed and the lateral strain difference between the soft and hard components was obviously reduced. This indicated that the strong mutual constraint between the two components contributed to the greatest extra strengthening.
|
|
Received: 01 November 2022
|
|
|
| Fund: National Natural Science Foundation of China(51931010);National Natural Science Foundation of China(92163202);National Natural Science Foundation of China(52001312);Key Research Program of Frontier Science and International Partnership Program, Chinese Academy of Sciences(GJHZ2029);China Postdoctoral Science Foundation(BX20190336);China Postdoctoral Science Foundation(2019M661150);Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(2021-PY02) |
Corresponding Authors:
LU Lei, professor, Tel: (024)23971939, E-mail: llu@imr.ac.cn
|
| 1 |
Zhang X, Misra A, Wang H, et al. Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning [J]. Acta Mater., 2004, 52: 995
doi: 10.1016/j.actamat.2003.10.033
|
| 2 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
|
| 3 |
Göken M, Höppel H W. Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding [J]. Adv. Mater., 2011, 23: 2663
doi: 10.1002/adma.v23.22/23
|
| 4 |
Koseki T, Inoue J, Nambu S. Development of multilayer steels for improved combinations of high strength and high ductility [J]. Mater. Trans., 2014, 55: 227
doi: 10.2320/matertrans.M2013382
|
| 5 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
| 6 |
Wang Y C, Luo X M, Chen L J, et al. Enhancement of shear stability of a Fe-based amorphous alloy using electrodeposited Ni layers [J]. J. Mater. Sci. Technol., 2018, 34: 2283
doi: 10.1016/j.jmst.2018.05.015
|
| 7 |
Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
|
| 8 |
Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: Theory and experiment [J]. Acta Metall. Mater., 1994, 42: 475
doi: 10.1016/0956-7151(94)90502-9
|
| 9 |
Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
|
| 10 |
Zeng Z, Li X Y, Xu D S, et al. Gradient plasticity in gradient nano-grained metals [J]. Extreme Mech. Lett., 2016, 8: 213
doi: 10.1016/j.eml.2015.12.005
|
| 11 |
Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
|
| 12 |
Gao H J, Huang Y G. Geometrically necessary dislocation and size-dependent plasticity [J]. Scr. Mater., 2003, 48: 113
doi: 10.1016/S1359-6462(02)00329-9
|
| 13 |
Cao Z, Cheng Z, Xu W, et al. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103: 67
doi: 10.1016/j.jmst.2021.06.043
|
| 14 |
Ma X L, Huang C X, Xu W Z, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material [J]. Scr. Mater., 2015, 103: 57
doi: 10.1016/j.scriptamat.2015.03.006
|
| 15 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
| 16 |
Fleck N A, Ashby M F, Hutchinson J W. The role of geometrically necessary dislocations in giving material strengthening [J]. Scr. Mater., 2003, 48: 179
doi: 10.1016/S1359-6462(02)00338-X
|
| 17 |
Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
|
| 18 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
pmid: 24799688
|
| 19 |
Beyerlein I J, Mara N A, Carpenter J S, et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation [J]. J. Mater. Res., 2013, 28: 1799
doi: 10.1557/jmr.2013.21
|
| 20 |
Fu E G, Li N, Misra A, et al. Mechanical properties of sputtered Cu/V and Al/Nb multilayer films [J]. Mater. Sci. Eng., 2008, A493: 283
|
| 21 |
Wang Y F, Yang M X, Ma X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates [J]. Mater. Sci. Eng., 2018, A727: 113
|
| 22 |
Wan T, Cheng Z, Bu L F, et al. Work hardening discrepancy designing to strengthening gradient nanotwinned Cu [J]. Scr. Mater., 2021, 201: 113975
doi: 10.1016/j.scriptamat.2021.113975
|
| 23 |
Liang F, Tan H F, Zhang B, et al. Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites [J]. Scr. Mater., 2017, 134: 28
doi: 10.1016/j.scriptamat.2017.02.032
|
| 24 |
Cuan X Y, Pan J, Cao R Q, et al. Effect of amorphous layer thickness on the tensile behavior of bulk-sized amorphous Ni-P/crystalline Ni laminates [J]. Mater. Lett., 2018, 218: 150
doi: 10.1016/j.matlet.2018.01.164
|
| 25 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
| 26 |
Nizolek T, Beyerlein I J, Mara N A, et al. Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates [J]. Appl. Phys. Lett., 2016, 108: 051903
|
| 27 |
Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
|
| 28 |
Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
|
| 29 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
| 30 |
Kwan C C F, Wang Z R. Strain incompatibility and its influence on grain coarsening during cyclic deformation of ARB copper [J]. Philos. Mag., 2013, 93: 1065
doi: 10.1080/14786435.2012.741729
|
| 31 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
| 32 |
Lu Q H, You Z S, Huang X X, et al. Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu [J]. Acta Mater., 2017, 127: 85
doi: 10.1016/j.actamat.2017.01.016
|
| 33 |
Cheng Z, Jin S, Lu L. Effect of electrolyte temperature on microstructures of direct-current electrodeposited nanotwinned Cu [J]. Acta Metall. Sin., 2018, 54: 428
doi: 10.11900/0412.1961.2017.00208
|
|
程 钊, 金 帅, 卢 磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响 [J]. 金属学报, 2018, 54: 428
|
| 34 |
Cheng Z, Lu L. The effect of gradient order on mechanical behaviors of gradient nanotwinned Cu [J]. Scr. Mater., 2019, 164: 130
doi: 10.1016/j.scriptamat.2019.02.006
|
| 35 |
Chassaing E, Wiart R. Epitaxial growth and electrode impedance of copper electrodeposits [J]. Electrochim. Acta, 1984, 29: 649
doi: 10.1016/0013-4686(84)87124-8
|
| 36 |
You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
doi: 10.1016/j.actamat.2011.07.044
|
| 37 |
Bai J S, Lu Q H, Lu L. Detwinning behavior induced by local shear strain in nanotwinned Cu [J]. Acta Metall. Sin., 2015, 52: 491
|
|
白敬胜, 卢秋虹, 卢 磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为 [J]. 金属学报, 2015, 52: 491
|
| 38 |
Semiatin S L, Piehler H R. Deformation of sandwich sheet materials in uniaxial tension [J]. Metall. Trans., 1979, 10A: 85
|
| 39 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
| 40 |
Bert C W, Mills E J, Hyler W S. Effect of variation in Poisson's ratio on plastic tensile instability [J]. J. Basic Eng., 1967, 89: 35
doi: 10.1115/1.3609567
|
| 41 |
Sinclair C W, Saada G, Embury J D. Role of internal stresses in co-deformed two-phase materials [J]. Philos. Mag., 2006, 86: 4081
doi: 10.1080/14786430600654438
|
| 42 |
Jing L J, Pan Q S, Long J Z, et al. Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu [J]. Scr. Mater., 2019, 161: 74
doi: 10.1016/j.scriptamat.2018.10.019
|
| 43 |
Li Y S, Zhang Y, Tao N R, et al. Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation [J]. Scr. Mater., 2008, 59: 475
doi: 10.1016/j.scriptamat.2008.04.043
|
| 44 |
Zhang Z, Vajpai S K, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics [J]. Mater. Sci. Eng., 2014, A598: 106
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|