Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (2): 277-288    DOI: 10.11900/0412.1961.2021.00241
Research paper Current Issue | Archive | Adv Search |
Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K
WANG Kai1, JIN Xi1, JIAO Zhiming2, QIAO Junwei1()
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K. Acta Metall Sin, 2023, 59(2): 277-288.

Download:  HTML  PDF(3876KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Concentrated multicomponent alloys (CMCAs) or high/medium-entropy alloys (HEAs/MEAs) possess outstanding comprehensive properties, causing them to have the potential to be the next generation of structural materials. Phenomena occurring under dynamic tensile loading or high/low temperature of such alloys have been hardly investigated. However, its understanding is essentially needed in their application in automotive, aerospace, and military industries. Meanwhile, the suitable constitutive equations of CMCAs under such cases have been rarely investigated. In this work, the thermodynamic behavior of equiatomic CrFeNi MEA with single-phase fcc structure has been systematically investigated at strain rates from 10-3 s-1 to 1800 s-1 and temperatures from 77 K to 1073 K. The results showed that as the deformation temperature decreased from 1073 K to 77 K, the yield stress was improved significantly from 125 MPa to 415 MPa. Meanwhile, the uniform elongation increased from 2% to 82%. The abnormal uniform elongation appearing at 673 K was closely related to dynamic strain aging. As the strain rate increased from 10-3 s-1 to 1800 s-1 at a constant temperature of 77 K, the strength increased significantly (e.g., the yield stress increased from 415 MPa to 595 MPa), and the uniform elongation remained unchanged, still maintaining 68% at 1800 s-1. After deformation, there were no second phases attributed to a large Ni amount in the alloys. Some deformation twins appeared at 77 K. Based on the experimental results, the relationship between yield stress and temperatures/strain rates could be successfully revealed using the ZA model. Moreover, regression analysis and constraint optimization established two phenomenological constitutive models (JC and KHL models) and three physically-based constitutive models (PB model, ZA model, and NNL model). JC and PB models had the highest and lowest description accuracy, respectively. Besides, the JC model was hard to describe the case that the work hardening decreased due to the change of temperature or strain rates, and the PB model was unsuitable in characterizing the complex work hardening behaviors.

Key words:  medium-entropy alloy      mechanical behavior      high strain rate      high/low temperature      constitutive equation     
Received:  10 June 2021     
ZTFLH:  O341  
Fund: National Natural Science Foundation of China(52271110);Opening Project of the State Key Laboratory of Explosion Science and Technology(KFJJ20-13M)
About author:  QIAO Junwei, professor, Tel: 13643467172, E-mail: qiaojunwei@tyut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00241     OR     https://www.ams.org.cn/EN/Y2023/V59/I2/277

Fig.1  Schematic of the split Hopkinson tensile bar
Fig.2  EBSD analyses of CrFeNi medium-entropy alloy (MEA) after 70% cold rolling followed by annealing at 1373 K for 10 min
(a) EBSD phase map
(b) EBSD inverse pole figure (IPF)
(c) EBSD band contrast map with Σ3 twin boundary showed by yellow lines
(d) XRD spectrum (a—lattice constant)
(e) grain size distribution map (Dave—avearge grain size)
(f) misorientation angle distribution map
Fig.3  Mechanical properties of CrFeNi MEA at different deformation temperatures and strain rate of 10-3 s-1
(a) quasi-static tensile engineering stress-strain curves
(b) yield stress (YS), ultimate tensile strength (UTS), and uniform elongation (UE)
(c) true stress-strain curves
(d) corresponding work hardening rate-true strain curves
Fig.4  Mechanical properties of CrFeNi MEA at different strain rates and temperature of 77 K
(a) cryogenic tensile engineering stress-strain curves
(b) YS, UTS, and UE
(c) true stress-strain curves
(d) corresponding work hardening rate-true strain curves
Fig.5  Yield stresses, fitting curves, and comparisons between predicted results from ZA models and experimental results at different temperatures and strain rates
(a) experimental yield stress and corresponding fit curve at 10-3 s-1 from ZA model
(b) experimental yield stress and corresponding fit curve at 77 K from ZA model
(c) comparisons between predicted results from ZA model and experimental results of yield stress at 10-3 s-1
(d) comparisons between predicted results from ZA model and experimental results of yield stress at 77 K
Fig.6  XRD spectra of CrFeNi MEA after tension at different temperatures
Fig.7  EBSD band contrast maps of CrFeNi MEA after tension with Σ3 twin boundary (yellow lines)
(a) 77 K (b) 298 K (c) 473 K (d) 673 K (e) 873 K (f) 1073 K
Fig.8  Comparisons of experimental data and phenomenological constitutive model description under quasit-static loading (a, c) and cryogenic loading (b, d) (ε˙—strain rate, T—temperature)
(a, b) JC model (c, d) KHL model
Fig.9  Comparisons of experimental data and physically-based constitutive model description under quasit-static loading (a, c, e) and cryogenic loading (b, d, f)
Fig.10  Description errors of experimental data for each constitutive model (strain rate—description error of experimental data obtained at constant temperatures and different strain rates; temperature—description error of experimental data obtained at constant strain rates and different temperatures; average—description error of all experimental data)
1 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
2 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
3 Wu Z, David S A, Feng Z, et al. Weldability of a high entropy CrMnFeCoNi alloy[J]. Scr. Mater., 2016, 124: 81
doi: 10.1016/j.scriptamat.2016.06.046
4 Bae J W, Moon J, Jang M J, et al. Deep drawing behavior of CoCrFeMnNi high-entropy alloys[J]. Metall. Mater. Trans., 2017, 48A: 4111
5 Zhao Y K, Lee D H, Seok M Y, et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement[J]. Scr. Mater., 2017, 135: 54
doi: 10.1016/j.scriptamat.2017.03.029
6 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Prog. Mater. Sci., 2019, 102: 296
doi: 10.1016/j.pmatsci.2018.12.003
7 Eleti R R, Bhattacharjee T, Shibata A, et al. Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy[J]. Acta Mater., 2019, 171: 132
doi: 10.1016/j.actamat.2019.04.018
8 Ma S G, Jiao Z M, Qiao J W, et al. Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy[J]. Mater. Sci. Eng., 2016, A649: 35
9 Song H, Kim D G, Kim D W, et al. Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy[J]. Sci. Rep., 2019, 9: 6163
doi: 10.1038/s41598-019-42704-x pmid: 30992512
10 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. J. Mater. Sci., 2012, 47: 4062
doi: 10.1007/s10853-012-6260-2
11 Zhang T W, Jiao Z M, Wang Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy[J]. Scr. Mater., 2017, 136: 15
doi: 10.1016/j.scriptamat.2017.03.039
12 Moon J, Hong S I, Seol J B, et al. Strain-rate sensitivity of high-entropy alloys and its significance in deformation[J]. Mater. Res. Lett., 2019, 7: 503
doi: 10.1080/21663831.2019.1668489
13 Zhang T W, Ma S G, Zhao D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling[J]. Int. J. Plast., 2020, 124: 226
doi: 10.1016/j.ijplas.2019.08.013
14 Zhang S, Wang Z, Yang H J, et al. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading[J]. Intermetallics, 2020, 121: 106699
doi: 10.1016/j.intermet.2020.106699
15 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
16 Zhang F, Zhou J Q. Tension-compression asymmetry and twin boundaries spacings effects in polycrystalline Ni nanowires[J]. J. Appl. Phys., 2016, 120: 044303
17 Habib S A, Khan A S, Gnäupel-Herold T, et al. Anisotropy, tension-compression asymmetry and texture evolution of a rare-earth-containing magnesium alloy sheet, ZEK100, at different strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 2017, 95: 163
doi: 10.1016/j.ijplas.2017.04.006
18 He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy[J]. Sci. Bull., 2018, 63: 362
doi: 10.1016/j.scib.2018.01.022
19 Khan A S, Sung Suh Y, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. Int. J. Plast., 2004, 20: 2233
doi: 10.1016/j.ijplas.2003.06.005
20 Khan A S, Liang R Q. Behaviors of three BCC metal over a wide range of strain rates and temperatures: Experiments and modeling[J]. Int. J. Plast., 1999, 15: 1089
doi: 10.1016/S0749-6419(99)00030-3
21 Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. Int. J. Plast., 1999, 15: 963
doi: 10.1016/S0749-6419(99)00021-2
22 Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Eng. Fract. Mech., 1983, 21: 541
23 Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. J. Appl. Phys., 1987, 61: 1816
doi: 10.1063/1.338024
24 Klepaczko J R, Rusinek A, Rodríguez-Martínez J A, et al. Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems[J]. Mech. Mater., 2009, 41: 599
doi: 10.1016/j.mechmat.2008.11.004
25 Netat-Nasser S, Li Y L. Flow stress of f.c.c. polycrystals with application to OFHC Cu[J]. Acta Mater., 1998, 46: 565
doi: 10.1016/S1359-6454(97)00230-9
26 Xu Z J, Huang F L. Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges[J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 015005
27 Xu Z J, Huang F L. Comparison of constitutive models for FCC metals over wide temperature and strain rate ranges with application to pure copper[J]. Int. J. Impact Eng., 2015, 79: 65
doi: 10.1016/j.ijimpeng.2014.10.003
28 Park J M, Moon J, Bae J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy[J]. Mater. Sci. Eng., 2018, A719: 155
29 Bobbili R, Madhu V. A modified Johnson-Cook model for FeCoNiCr high entropy alloy over a wide range of strain rates[J]. Mater. Lett., 2018, 218: 103
doi: 10.1016/j.matlet.2018.01.163
30 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
31 Meyers M A. Dynamic Behavior of Materials[M]. New York: John Wiley & Sons Inc., 1994: 305
32 Wang K, Wang X J, Zhang T W, et al. Tuning Cr-rich nanoprecipitation and heterogeneous structure in equiatomic CrFeNi medium-entropy stainless alloys[J]. J. Iron Steel Res. Int., 2022, 29: 529
doi: 10.1007/s42243-020-00520-y
33 Liang Z Y, Luo Z C, Huang M X. Temperature dependence of strengthening mechanisms in a twinning-induced plasticity steel[J]. Int. J. Plast., 2019, 116: 192
doi: 10.1016/j.ijplas.2019.01.003
34 Wang X G, Huang M X. Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel[J]. J. Iron Steel Res. Int., 2017, 24: 1073
doi: 10.1016/S1006-706X(17)30156-5
35 Yoshida S, Bhattacharjee T, Bai Y, et al. Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing[J]. Scr. Mater., 2017, 134: 33
doi: 10.1016/j.scriptamat.2017.02.042
36 Reed R P. The spontaneous martensitic transformations in 18% Cr, 8% Ni steels[J]. Acta Metall., 1962, 10: 865
doi: 10.1016/0001-6160(62)90101-3
37 Wei D X, Li X Q, Schönecker S, et al. Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys[J]. Acta Mater., 2019, 181: 318
doi: 10.1016/j.actamat.2019.09.050
38 Christian J W, Mahajan S. Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1
doi: 10.1016/0079-6425(94)00007-7
39 Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels[J]. Acta Mater., 2011, 59: 1068
doi: 10.1016/j.actamat.2010.10.037
40 Wang K. Microstructure control and dynamic tension deformation behavior of CrFeNi medium entropy alloys[D]. Taiyuan: Taiyuan University of Technology, 2021
王 凯. CrFeNi中熵合金的组织调控与动态拉伸变形行为[D]. 太原: 太原理工大学, 2021
41 De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
42 Xu Z J, Huang F L. Thermomechanical behavior and constitutive modeling of tungsten-based composite over wide temperature and strain rate ranges[J]. Int. J. Plast., 2013, 40: 163
doi: 10.1016/j.ijplas.2012.08.004
[1] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[2] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[3] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[4] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[5] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[6] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[7] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[8] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[9] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[10] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[11] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[12] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[13] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[14] Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN,Huiguang GUO. COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 956-964.
[15] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
No Suggested Reading articles found!