Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (7): 926-938    DOI: 10.11900/0412.1961.2021.00597
Research paper Current Issue | Archive | Adv Search |
Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment
CHEN Runnong1,2,3, LI Zhaodong1(), CAO Yanguang1,4, ZHANG Qifu2, LI Xiaogang3
1Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2National Engineering Laboratory of Advanced Coating Technology for Metals, Central Iron and Steel Research Institute, Beijing 100081, China
3Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
4Maanshan Iron & Steel Co. Ltd., Maanshan 243003, China
Cite this article: 

CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment. Acta Metall Sin, 2023, 59(7): 926-938.

Download:  HTML  PDF(5401KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The South China Sea is a marine atmosphere environment with high humidity, high salt content, and strong radiation. Traditional weathering steel and 3Ni advanced weathering steel cannot meet the service requirements in the South China Sea environment, necessitating the development of steel with improved corrosion resistance. Alloy steels with Cr of 2.5%-10% (mass fraction) provide a marginal gain in corrosion performance at a low cost and have great potential for marine atmospheric application. A 9%Cr alloy steel was designed to obtain higher corrosion resistance, and the relevant results can offer a reference for developing novel corrosion-resistant steels for the marine atmospheric environment. The initial corrosion behavior of 9%Cr alloy steel in a Cl- containing environment was investigated using dry-wet cycle test, SEM, TEM, XRD, and electrochemical approaches, and the effects of composite inclusions (Mg, Si, Al)O-MnS and Cr-rich M23C6 on its local corrosion behavior were discussed. The findings demonstrate that the initial corrosion resistance of alloy steel was more than 12 times that of 09CuPCrNi, and local corrosion occurred during the 360-h dry-wet cycle. Pits' depth below the rust layer followed the lognormal distribution, and the pits' maximum depth (Dmax) and average depth (Dave) with time (t) were in line with the power functions Dmax = 8.4844 × t 0.65717 and Dave = 7.3181 × t 0.53866, respectively. The rust layer's compactness and the α / γ* ratio increased over time, but the addition of high Cr delayed the corrosion. Thus, the rust layer did not entirely cover the surface and only provided limited protection, and an exponent value obtained by fitting the weight loss according to the power function was greater than 1. (Mg, Si, Al)O-MnS caused metastable pitting corrosion through a preferential dissolution of MnS or MgO regions, but its immersion in 2%NaCl solution for 300 min did not induce surrounding matrix's dissolution. The Cr consumption caused by Cr-rich M23C6's precipitation was the primary reason for preferentially inducing local corrosion.

Key words:  Cl- containing environment      local corrosion      inclusion      M23C6      9%Cr alloy steel     
Received:  31 December 2021     
ZTFLH:  TG174.22  
Fund: National Key Research and Development Program of China(2021YFB3701702);Central Iron and Steel Research Institute Foundation(20G61860A)
Corresponding Authors:  LI Zhaodong, professor senior engineer, Tel: (010)62181284, E-mail: cisri_lizhaodong@126.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00597     OR     https://www.ams.org.cn/EN/Y2023/V59/I7/926

Fig.1  Schematic of manufacturing process of 9Cr steel
SteelCSiMnCrNiCoCuFe
9Cr0.020.500.908.981.500.300.015Bal.
09CuPCrNi0.100.400.300.300.02-0.300Bal.
Table 1  Chemical compositions of 9Cr and 09CuPCrNi steels
Fig.2  Corrosion rates (a) and weight losses (b) of 9Cr and 09CuPCrNi steels as a function of time (W—weight loss, t—corrosion time)
Fig.3  Macro (a1-a4) and micro (b1-b4) surface corrosion morphologies of 9Cr steels corroded for different time and the high-resolution SEM images (c1-c4) corresponding to the square areas in Figs.3b1-b4
(a1-c1) 72 h (a2-c2) 168 h (a3-c3) 264 h (a4-c4) 360 h
PositionOCrMnFeCoNiClC
13.968.651.1883.860.352.00--
242.287.20-46.31--3.430.78
346.006.08-45.72--2.20-
441.903.67-49.21--5.22-
Table 2  EDS results corresponding to the square areas in Figs.3c1-c4
Fig.4  Cross-sectional morphologies of rust layer (a-d) and corresponding main element distributions (e-h) of 9Cr steels after corrosion for 72 h (a, e), 168 h (b, f), 264 h (c, g), and 360 h (d, h)
Fig.5  Cross-sectional morphology (a) and EPMA elemental mappings (b-e) of the cross-sectional rust layer of 9Cr steel after corrosion for 360 h
Fig.6  Nyquist plots (a), phase angle plots (b), modulus plots (c), and equivalent circuit (d) of corroded 9Cr steels in 2%NaCl solution (Zim-imaginary part of impedance, Zre-real part of impedance, |Z|-impedance modulus, Rs-resistance of electrolyte, Qdl-constant phase element of double layer, Rp-polarization resistance)
Time / hRs / (Ω·cm2)Y0 / (10-3 s-n ·Ω-1·cm-2)nRp / (Ω·cm2)χ2 / 10-3
721.1276.1540.6797778.13.877
1681.7273.8410.60681694.01.999
2642.7743.6620.6414860.21.549
3604.0129.5200.5094704.82.809
Table 3  EIS fitting data of corroded 9Cr steels in 2%NaCl solution via the equivalent circuit in Fig.6d
Fig.7  XRD spectra (a) and semi-quantitative results (b) of the scraped rust formed on 9Cr steel surface after corrosion for different time (α / γ*-ratio of the content of α-FeOOH to the content of γ-FeOOH and Fe3O4)
Fig.8  Distributions of pit depth (a) and variation law of pit depth (b) of 9Cr steel surface after corrosion for different time (Dmax-maximum value of the measured pit depth, Dave-average value of the measured pit depth)
Fig.9  Distributions of diameter-depth ratio of pits on 9Cr steel surface after corrosion for 72 h (a), 168 h (b), 264 h (c), and 360 h (d)
Fig.10  Polarization curve of 9Cr steel in 2%NaCl solu-tion (a) and the magnified plot corresponding to the square region in Fig.10a (Inset shows the surface morphology of 9Cr sample after polariz-ation test) (b)
Fig.11  Representative metastable pitting morphologies (a-c) on the surface of 9Cr steel after polarization test
Fig.12  SEM images and corresponding EDS element maps of MnS-rich (a) and MnS-poor (b) composite inclusions
Fig.13  Corrosion morphologies of MnS-rich (a1-a3) and MnS-poor (b1-b3) composite inclusions immersed in 2%NaCl solution for 5 min (a1, b1), 50 min (a2, b2), and 300 min (a3, b3)
Fig.14  Local corrosion morphologies (a, b) of 9Cr steel immersed in 2%NaCl solution for 300 min and main element distributions (c, d) around a corrosion pit in Fig.14b (Inset in Fig.14a shows the corresponding high magnified image)
Fig.15  Distribution characteristics and composition analysis of M23C6 in 9Cr steel (Inset in Fig.15b shows the SAED pattern of zone 1)
(a) low magnified TEM image (b) high magnified TEM image
(c) EDS of zone 1 in Fig.15b (d) Cr poor phenomenon near M23C6
1 Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
2 Huang T, Chen X P, Wang X D, et al. A study on the rust characteristics and corrosion resistance of high strength weathering steels in NaCl solution [J]. J. Mech. Eng., 2017, 53(20): 45
doi: 10.3901/JME.2017.20.045
黄 涛, 陈小平, 王向东 等. 高强耐候钢在NaCl溶液中的腐蚀锈层特征和耐腐蚀性研究 [J]. 机械工程学报, 2017, 53(20): 45
3 Ma Y T, Li Y, Wang F H. Weatherability of 09CuPCrNi steel in a tropical marine environment [J]. Corros. Sci., 2009, 51: 1725
doi: 10.1016/j.corsci.2009.04.024
4 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1
5 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
6 Morcillo M, Díaz I, Chico B, et al. Weathering steels: From empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
7 Usami A, Kihira H, Kusunoki T. 3%-Ni weathering steel plate for uncoated bridges at high airborne salt environment [R]. Tokyo, Japan: Nippon Steel Technical Development Bureau, 2003
8 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
9 Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
doi: 10.1016/j.apsusc.2017.12.018
10 Presuel-Moreno F, Scully J R, Sharp S R. Literature review of commercially available alloys that have potential as low-cost, corrosion-resistant concrete reinforcement [J]. Corrosion, 2010, 66: 086001
11 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
12 Cano H, Díaz I, de la Fuente D, et al. Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities [J]. Mater. Corros., 2018, 69: 8
13 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
14 Zhang Q C, Wu J S, Zheng W L, et al. Characterization of rust layer formed on low alloy steel exposed in marine atmosphere [J]. J. Mater. Sci. Technol., 2002, 18: 455
15 Zhang Q C, Wu J S, Wang J J, et al. Corrosion behavior of weathering steel in marine atmosphere [J]. Mater. Chem. Phys., 2003, 77: 603
doi: 10.1016/S0254-0584(02)00110-4
16 Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
17 Yamashita M, Shimizu T, Konishi H, et al. Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays [J]. Corros. Sci., 2003, 45: 381
doi: 10.1016/S0010-938X(02)00093-8
18 Hubbard C R, Snyder R L. RIR-measurement and use in quantitative XRD [J]. Powder Diffr., 1988, 3: 74
doi: 10.1017/S0885715600013257
19 Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
doi: 10.1016/j.corsci.2011.08.028
20 Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
doi: 10.1016/j.corsci.2013.08.021
21 Kamimura T, Yamashita M, Uchida H, et al. Correlation between corrosion rate and composition of crystalline corrosion products formed on weathering steels [J]. J. Jpn Inst. Met. Mater., 2001, 65: 922
22 Okada H, Hosoi Y, Yukawa K, et al. Structure of the protective and decorative rust formed on low-alloy steels in the atmosphere [J]. Trans. ASM, 1969, 62: 278
23 Almeida E, Morcillo M, Rosales B. Atmospheric corrosion of mild steel. Part II—Marine atmospheres [J]. Mater. Corros., 2000, 51: 865
doi: 10.1002/(ISSN)1521-4176
24 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 158
曹楚南. 腐蚀电化学原理 [M]. 第 3版, 北京: 化学工业出版社, 2008: 158
25 Rovere C A D, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
doi: 10.1016/j.corsci.2011.12.022
26 Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
doi: 10.1016/j.electacta.2009.10.065
27 Liu B, Mu X, Yang Y, et al. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 1228
doi: 10.1016/j.jmst.2019.01.008
28 Dillmann P, Mazaudier F, Hoerlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
29 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2799
doi: 10.1016/j.corsci.2005.10.004
30 Newman R C. Understanding the corrosion of stainless steel [J]. Corrosion, 2001, 57: 1030
doi: 10.5006/1.3281676
31 Tang Y M, Zuo Y, Wang J N, et al. The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions [J]. Corros. Sci., 2014, 80: 111
doi: 10.1016/j.corsci.2013.11.015
32 Yang Z X, Kan B, Li J X, et al. Pitting initiation and propagation of X70 pipeline steel exposed to chloride-containing environments [J]. Materials, 2017, 10: 1076
doi: 10.3390/ma10091076
33 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
doi: 10.1016/j.corsci.2018.04.007
34 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
doi: 10.5006/1837
35 Li Y B, Liu J, Deng Y D, et al. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution [J]. J. Alloys Compd., 2016, 673: 28
doi: 10.1016/j.jallcom.2016.02.224
36 Tyurin A G, Pyshmintsev I Y, Kostitsyna I V, et al. Thermodynamics of chemical and electrochemical stability of corrosion active nonmetal inclusions [J]. Prot. Met., 2007, 43: 34
doi: 10.1134/S0033173207010043
37 Luo H, Wang X Z, Dong C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution [J]. Corros. Sci., 2017, 124: 178
doi: 10.1016/j.corsci.2017.05.021
38 Lu H H, Li W Q, Du L Y, et al. The effects of martensitic transformation and (Fe, Cr)23C6 precipitation on the properties of transformable ferritic stainless steel [J]. Mater. Sci. Eng., 2019, A754: 502
39 Ly R, Hartwig K T, Castaneda H. Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061 [J]. Corros. Sci., 2018, 139: 47
doi: 10.1016/j.corsci.2018.04.023
40 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
[1] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[2] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[3] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[4] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[5] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[6] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[7] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[8] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[9] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[10] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[11] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[13] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[14] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
[15] Tongbang AN,Zhiling TIAN,Jiguo SHAN,Jinshan WEI. EFFECT OF SHIELDING GAS ON MICROSTRUCTURE AND PERFORMANCE OF 1000 MPa GRADE DEPOSITED METALS[J]. 金属学报, 2015, 51(12): 1489-1499.
No Suggested Reading articles found!