Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 821-831    DOI: 10.3724/SP.J.1037.2013.00675
Original Article Current Issue | Archive | Adv Search |
INTEGRATED SIMULATION OF THE FORGING PROCESS FOR GH4738 ALLOY TURBINE DISK AND ITS APPLICATION
LI Linhan, DONG Jianxin, ZHANG Maicang, YAO Zhihao
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(8158KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to control the grain size of forged turbine disk of wrought superalloy like GH4738 more effectively, constitutive equations and grain structure evolution models of GH4738 alloy are used in Deform 3DTM for achieving integrated simulation of whole forging process of GH4738 alloy turbine disk (from preheating billet for upsetting to die forging). By using of integrated simulation, the variation of temperature, average grain size, etc., during the whole forging process has been explored, making it possible to control these parameters quantitatively. Comparing with traditional simple stage simulation, results of integrated simulation are more consistent with corresponding experimental results of forged turbine disk (300 mm in diameter). Therefore, the reliability of the integrated simulation is verified. Finally, with the application of integrated simulation, GH4738 alloy turbine disk with a diameter of 1450 mm has been successfully forged by 8×104 t forging press. This work provides a more practical simulation method for helping the process design of forging large turbine disk.
Key words:  GH4738 alloy      turbine disk      integrated simulation     
Received:  25 October 2013     
ZTFLH:  TG132.32  
  TG312  
Fund: Supported by High Technology Research and Development Program of China (No.2012AA03A513)
Corresponding Authors:  YAO Zhihao, lecturer, Tel: (010)62332884, E-mail: zhihaoyao@ustb.edu.cn   

Cite this article: 

LI Linhan, DONG Jianxin, ZHANG Maicang, YAO Zhihao. INTEGRATED SIMULATION OF THE FORGING PROCESS FOR GH4738 ALLOY TURBINE DISK AND ITS APPLICATION. Acta Metall Sin, 2014, 50(7): 821-831.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00675     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/821

[1] Chang K M, Liu X B. Mater Sci Eng, 2001; A308: 1
[2] Whelchel R L, Kelekanjeri V S K G, Gerhardt R A, Ilavsky J. Metall Mater Trans, 2011; 42A: 1362
[3] Yao Z H, Dong J X, Zhang M C, Zheng L. Rare Met Mater Eng, 2010; 39: 1565
(姚志浩, 董建新, 张麦仓, 郑 磊. 稀有金属材料与工程, 2010; 39: 1565)
[4] Tong J, Vermeulen B. Int J Fatigue, 2003; 25: 413
[5] Semiatin S L, Fagin P N, Glavicic M G. Scr Mater, 2004; 50: 625
[6] Liu X B, Kang B, Chang K M. Mater Sci Eng, 2003; A340: 8
[7] Tin S, Lee P D, Kermanpur A, Rist M, McLean M. Metall Mater Trans, 2005; 36A: 2493
[8] Bertrand C, Cabrera J M, HerreroA, Mateos P, Prado J M. Mater Sci Forum, 1993; 113-115: 39
[9] ?ukaszek-So?ek A, Krawczyk J, Chy?a P. J Alloys Compd, doi: 10.1016/j.jallcom.2013.12.070
[10] Bramley A N, Mynors D J. Mater Des, 2000; 21: 279
[11] de Jaeger J, Solas D, BaudinT, FandeurO, Schmitt J H, Rey C. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Pennsylvania: TMS, 2012: 663
[12] Dandre C A, Walsh C A, Evans R W, Reed R C, Roberts S M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Pennsylvania: TMS, 2000: 85
[13] Sun M Y. PhD Dissertation, Graduate School of the Chinese Academy of Sciences, Beijing, 2009
(孙明月. 中国科学院研究生院博士学位论文, 北京, 2009)
[14] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011; 47: 1581
(姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)
[15] Yao Z H, Wang Q Y, Zhang M C, Dong J X. Acta Metall Sin, 2011; 47: 1591
(姚志浩, 王秋雨, 张麦仓, 董建新. 金属学报, 2011; 47: 1591)
[16] Shen G S, Semiatin S L, Shivpuri R. Metall Mater Trans, 1995; 26A: 1795
[17] Zhang H Y, Zhang S H, Li Z X, Cheng M. J Eng Manuf, 2010; 224: 103
[18] Cha D J, Kim D K, Cho J R, Bae W B. Int J Preci Eng Manuf, 2011; 12: 331
[19] Shen G S, Furrer D. J Mater Process Technol, 2000; 98: 189
[20] Shahriari D, Amiri A, Sadeghi M H, Cheraghzadeh M. Int J Mater Form, 2008; 1(Suppl 1): 29
[21] Jeong H S, Cho J R, Park H C. J Mater Process Technol, 2005; 162-163: 504
[22] Ma Q, Lin Z Q, Yu Z Q. Int J Adv Manuf Technol, 2009; 40: 253
[23] China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook. 2nd Ed., Vol.2, Beijing: China Standards Press, 2001: 475
(中国航空材料手册编辑委员会编. 中国航空材料手册(第二版)/第二卷. 北京: 中国标准出版社, 2001: 475)
[1] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[2] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[3] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
No Suggested Reading articles found!