Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications
XU Wence, CUI Zhenduo, ZHU Shengli()
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Cite this article:
XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications. Acta Metall Sin, 2022, 58(12): 1527-1544.
Open-cell porous metal materials are multifunctional lightweight materials that have attracted considerable attention in electrocatalysis and biomedicine owing to their large specific surface area, low bulk density, good specific strength, high conductivity, and high mass transfer. The morphology, porosity, composition, crystal structure, and other properties of open-cell porous metal materials can be controlled precisely by designing different metal systems and developing efficient preparation technologies. Therefore, the corresponding functional performance of open-cell porous metal materials, such as catalytic activity, selectivity, stability, and biocompatibility, can be improved further. This paper briefly describes the fabrication methods and principles of open-cell porous metal materials for electrocatalysis and biomedicine. In addition, the recent developments in open-cell porous metal materials for electrocatalysis and biomedicine are summarized. Finally, the future development directions of open-cell porous metal materials for electrocatalysis and biomedicine are proposed.
Fig.1 Schematic of the preparation of porous metal by dealloying method
Fig.2 Schematics of the fabrication of porous metal by template method (a) soft template method (b) hard template method
Fig.3 Schematics of selective laser melting machine (F—focal distance, θ—scanning angle) (a) and enlarged schematic of building platform (b)
Fig.4 Schematic of application of porous metal based on electrocatalysis
Fig.5 Conceptual illustration of the biological processes of bone formation around the porous scaffold
1
Shi S, Li Y, Ngo-Dinh B N, et al. Scaling behavior of stiffness and strength of hierarchical network nanomaterials [J]. Science, 2021, 371: 1026
doi: 10.1126/science.abd9391
pmid: 33674489
2
Lang X Y, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors [J]. Nat. Nanotechnol., 2011, 6: 232
doi: 10.1038/nnano.2011.13
pmid: 21336267
Knyrim J S, Becker P, Johrendt D, et al. A new non-centrosymmetric modification of BiB3O6 [J]. Angew. Chem. Int. Ed., 2006, 45: 8239
doi: 10.1002/anie.200602993
5
Biener J, Biener M M, Madix R J, et al. Nanoporous gold: Understanding the origin of the reactivity of a 21st century catalyst made by pre-columbian technology [J]. ACS Catal., 2015, 5: 6263
doi: 10.1021/acscatal.5b01586
6
Wang X G, Wang W M, Qi Z, et al. Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites [J]. J. Alloys Compd., 2010, 508: 463
doi: 10.1016/j.jallcom.2010.08.094
7
Wang D H, Engle K M, Shi B F, et al. Ligand-enabled reactivity and selectivity in a synthetically versatile aryl C-H olefination [J]. Science, 2010, 327: 315
doi: 10.1126/science.1182512
8
Wittstock A, Biener J, Bäumer M. Nanoporous gold: A new material for catalytic and sensor applications [J]. Phys. Chem. Chem. Phys., 2010, 12: 12919
doi: 10.1039/c0cp00757a
pmid: 20820589
9
Dixon M C, Daniel T A, Hieda M, et al. Preparation, structure, and optical properties of nanoporous gold thin films [J]. Langmuir, 2007, 23: 2414
pmid: 17249701
10
He R, Wang Y C, Wang X Y, et al. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties [J]. Nat. Commun., 2014, 5: 4327
doi: 10.1038/ncomms5327
pmid: 24999674
11
Chapman C A R, Wang L, Chen H, et al. Nanoporous gold biointerfaces: Modifying nanostructure to control neural cell coverage and enhance electrophysiological recording performance [J]. Adv. Funct. Mater., 2017, 27: 1604631
12
Liu D Q, Yang Z B, Wang P, et al. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes [J]. Nanoscale, 2013, 5: 1917
doi: 10.1039/c2nr33383j
pmid: 23354412
13
Ryan G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use in orthopaedic applications [J]. Biomaterials, 2006, 27: 2651
pmid: 16423390
14
Wang M Y, Yu X T, Wang Z, et al. Hierarchically 3D porous films electrochemically constructed on gas-liquid-solid three-phase interface for energy application [J]. J. Mater. Chem., 2017, 5A: 9488
15
Zhang J T, Li C M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems [J]. Chem. Soc. Rev., 2012, 41: 7016
doi: 10.1039/c2cs35210a
pmid: 22975622
16
Fujita T, Guan P F, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold [J]. Nat. Mater., 2012, 11: 775
doi: 10.1038/nmat3391
pmid: 22886067
17
Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty [J]. J. Shoulder Elbow Surg., 2003, 12: 35
pmid: 12610484
18
Torres Y, Trueba P, Pavón J, et al. Designing, processing and characterisation of titanium cylinders with graded porosity: An alternative to stress-shielding solutions [J]. Mater. Des., 2014, 63: 316
doi: 10.1016/j.matdes.2014.06.012
19
Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials, 2000, 21: 667
pmid: 10711964
20
Zhang Z, Jones D, Yue S, et al. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants [J]. Mater. Sci. Eng., 2013, C33: 4055
21
Xiao J, Qiu G B. Research review of space holders of sintered titanium foams with large pores and high porosity [J]. Mater. China, 2018, 37: 372
Li Y X, Cui Z D, Yang X J, et al. The porous TiNb24Zr4 alloys with controllable porosity fabricated by conventional sintering [J]. Adv. Mater. Res., 2011, 335-336: 797
24
Lu Z L, Xu W L, Cao J W, et al. Microstructures and properties of porous TiAl-based intermetallics prepared by freeze-casting [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 382
doi: 10.1016/S1003-6326(20)65220-7
25
Li J R, Yu C L, Xu Z J, et al. Preparing a novel gradient porous metal fiber sintered felt with better manufacturability for hydrogen production via methanol steam reforming [J]. Int. J. Hydrogen Energy, 2019, 44: 23983
doi: 10.1016/j.ijhydene.2019.07.142
26
Zou C M, Zhang E L, Zeng S Y. Porous titanium by fiber sintering and its biomimetic Ca-P coating [J]. Rare Met. Mater. Eng., 2007, 36: 1394
Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. J. Mater. Sci., 2006, 41: 763
doi: 10.1007/s10853-006-6555-2
28
Zhang F M, Otterstein E, Burkel E. Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams [J]. Adv. Eng. Mater., 2010, 12: 863
doi: 10.1002/adem.201000106
29
McCue I, Benn E, Gaskey B, et al. Dealloying and dealloyed materials [J]. Annu. Rev. Mater. Res., 2016, 46: 263
doi: 10.1146/annurev-matsci-070115-031739
30
Newman R C, Corcoran S G, Erlebacher J, et al. Alloy corrosion [J]. MRS Bull., 1999, 24: 24
31
Joo S H, Bae J W, Park W Y, et al. Beating thermal coarsening in nanoporous materials via high-entropy design [J]. Adv. Mater., 2020, 32: 1906160
32
Yang X X, Xu W C, Cao S, et al. An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production [J]. Appl. Catal., 2019, 246B: 156
33
Fujita T. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality [J]. Sci. Technol. Adv. Mater., 2017, 18: 724
doi: 10.1080/14686996.2017.1377047
34
Chuang A, Erlebacher J. Challenges and opportunities for integrating dealloying methods into additive manufacturing [J]. Materials, 2020, 13: 3706
doi: 10.3390/ma13173706
35
Ding Y, Kim Y J, Erlebacher J. Nanoporous gold leaf: "Ancient technology"/advanced material [J]. Adv. Mater., 2004, 16: 1897
doi: 10.1002/adma.200400792
36
Kertis F, Snyder J, Govada L, et al. Structure/processing relationships in the fabrication of nanoporous gold [J]. JOM, 2010, 62(6): 50
37
Vega A A, Newman R C. Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au:Pt ratio [J]. J. Electrochem. Soc., 2014, 161: C1
doi: 10.1149/2.003401jes
38
Ye X L, Lu N, Li X J, et al. Primary and secondary dealloying of Au(Pt)-Ag: Structural and compositional evolutions, and volume shrinkage [J]. J. Electrochem. Soc., 2014, 161: C517
doi: 10.1149/2.0131412jes
39
Wang Z L, Liu P, Han J H, et al. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying [J]. Nat. Commun., 2017, 8: 1066
doi: 10.1038/s41467-017-01085-3
pmid: 29057916
40
Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2001, 410: 450
doi: 10.1038/35068529
41
Xu W C, Zhu S L, Liang Y Q, et al. A nanoporous metal phosphide catalyst for bifunctional water splitting [J]. J. Mater. Chem., 2018, 6A: 5574
42
Wang Z L, Ning S C, Liu P, et al. Tuning surface structure of 3D nanoporous gold by surfactant-free electrochemical potential cycling [J]. Adv. Mater., 2017, 29: 1703601
43
Fu J T, Corsi J S, Welborn S S, et al. Eco-friendly synthesis of nanoporous magnesium by air-free electrolytic dealloying with recovery of sacrificial elements for energy conversion and storage applications [J]. ACS Sustain. Chem. Eng., 2021, 9: 2762
doi: 10.1021/acssuschemeng.0c08157
44
Shi H, Zhou Y T, Yao R Q, et al. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting [J]. Nat. Commun., 2020, 11: 2940
doi: 10.1038/s41467-020-16769-6
45
Xu W C, Fan G L, Zhu S L, et al. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction [J]. Adv. Funct. Mater., 2021, 31: 2107333
46
Lan J, Peng M, Liu P, et al. Scalable synthesis of nanoporous boron for high efficiency ammonia electrosynthesis [J]. Mater. Today, 2020, 38: 58
doi: 10.1016/j.mattod.2020.04.012
47
Tan Y W, Wang H, Liu P, et al. 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production [J]. Adv. Mater., 2016, 28: 2951
doi: 10.1002/adma.201505875
48
Tan Y W, Wang H, Liu P, et al. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting [J]. Energy Environ. Sci., 2016, 9: 2257
doi: 10.1039/C6EE01109H
49
Guo X Y, Zhang C X, Tian Q H, et al. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review [J]. Mater. Today Commun., 2021, 26: 102007
50
Harrison J D, Wagner C. The attack of solid alloys by liquid metals and salt melts [J]. Acta Metall., 1959, 7: 722
doi: 10.1016/0001-6160(59)90178-6
51
Wada T, Yubuta K, Inoue A, et al. Dealloying by metallic melt [J]. Mater. Lett., 2011, 65: 1076
doi: 10.1016/j.matlet.2011.01.054
52
Okulov I V, Okulov A V, Volegov A S, et al. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters [J]. Scr. Mater., 2018, 154: 68
doi: 10.1016/j.scriptamat.2018.05.029
53
Okulov I V, Okulov A V, Soldatov I V, et al. Open porous dealloying-based biomaterials as a novel biomaterial platform [J]. Mater. Sci. Eng., 2018, C88: 95
54
Kim J W, Tsuda M, Wada T, et al. Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors [J]. Acta Mater., 2015, 84: 497
doi: 10.1016/j.actamat.2014.11.002
55
Hadden M, Martinez-Martin D, Yong K T, et al. Recent advancements in the fabrication of functional nanoporous materials and their biomedical applications [J]. Materials, 2022, 15: 2111
doi: 10.3390/ma15062111
56
Han J H, Li C, Lu Z, et al. Vapor phase dealloying: A versatile approach for fabricating 3D porous materials [J]. Acta Mater., 2019, 163: 161
doi: 10.1016/j.actamat.2018.10.012
57
Lu Z, Li C, Han J H, et al. Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying [J]. Nat. Commun., 2018, 9: 276
doi: 10.1038/s41467-017-02167-y
pmid: 29348401
58
Li J, Li L J, Gao Y F, et al. Preparation of nanomaterials employing template method [J]. Mater. Rep., 2011, 25(2): 5
Krishnan M R, Chien Y C, Cheng C F, et al. Fabrication of mesoporous polystyrene films with controlled porosity and pore size by solvent annealing for templated syntheses [J]. Langmuir, 2017, 33: 8428
doi: 10.1021/acs.langmuir.7b02195
pmid: 28817284
60
Tang W X, Wu X F, Li S D, et al. Co-nanocasting synthesis of mesoporous Cu-Mn composite oxides and their promoted catalytic activities for gaseous benzene removal [J]. Appl. Catal., 2015, 162B: 110
61
Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina [J]. Science, 1995, 268: 1466
pmid: 17843666
62
Zheng M, Yang J, Zhang H. Review on preparation and applications of porous metal materials [J]. Mater. Rep., 2022, 36(18): 78
Zhao L J, Zhang F, Peng J, et al. Research progress and application of preparation technology of porous metal materials [J]. Powder Metall. Ind., 2022, 32(5): 110
Furumoto T, Koizumi A, Alkahari M R, et al. Permeability and strength of a porous metal structure fabricated by additive manufacturing [J]. J. Mater. Process. Technol., 2015, 219: 10
doi: 10.1016/j.jmatprotec.2014.11.043
65
Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Mater., 2010, 58: 3303
doi: 10.1016/j.actamat.2010.02.004
66
Liu Y J, Li S J, Zhang L C, et al. Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting [J]. Scr. Mater., 2018, 153: 99
doi: 10.1016/j.scriptamat.2018.05.010
67
Li S J, Murr L E, Cheng X Y, et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting [J]. Acta Mater., 2012, 60: 793
doi: 10.1016/j.actamat.2011.10.051
68
Cansizoglu O, Harrysson O, Cormier D, et al. Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting [J]. Mater. Sci. Eng., 2008, A492: 468
69
Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting [J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
70
Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells [J]. Chem. Rev., 2010, 110: 6446
doi: 10.1021/cr1002326
pmid: 21062097
71
Hansen J N, Prats H, Toudahl K K, et al. Is there anything better than Pt for HER? [J]. ACS Energy Lett., 2021, 6: 1175
doi: 10.1021/acsenergylett.1c00246
pmid: 34056107
72
Liu S L, Mu X Q, Duan H Y, et al. Pd nanoparticle assemblies as efficient catalysts for the hydrogen evolution and oxygen reduction reactions [J]. Eur. J. Inorg. Chem., 2017, 2017: 535
doi: 10.1002/ejic.201601277
73
Yu A, Kim S Y, Lee C, et al. Boosted electron-transfer kinetics of hydrogen evolution reaction at bimetallic RhCo alloy nanotubes in acidic solution [J]. ACS Appl. Mater. Interfaces, 2019, 11: 46886
doi: 10.1021/acsami.9b16892
74
Xie J F, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution [J]. Adv. Mater., 2013, 25: 5807
doi: 10.1002/adma.201302685
75
Sun J S, Wen Z, Han L P, et al. Nonprecious intermetallic Al7Cu4Ni nanocrystals seamlessly integrated in freestanding bimodal nanoporous copper for efficient hydrogen evolution catalysis [J]. Adv. Funct. Mater., 2018, 28: 1706127
76
Xu X S, Deng Y X, Gu M H, et al. Large-scale synthesis of porous nickel boride for robust hydrogen evolution reaction electrocatalyst [J]. Appl. Surf. Sci., 2019, 470: 591
doi: 10.1016/j.apsusc.2018.11.127
77
Jiang B, Guo Y N, Kim J, et al. Mesoporous metallic iridium nanosheets [J]. J. Am. Chem. Soc., 2018, 140: 12434
doi: 10.1021/jacs.8b05206
pmid: 30129750
78
Liu Z Y, Li J H, Zhang J, et al. Ultrafine Ir nanowires with microporous channels and superior electrocatalytic activity for oxygen evolution reaction [J]. ChemCatChem, 2020, 12: 3060
doi: 10.1002/cctc.202000388
79
Yao Q, Huang B L, Zhang N, et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis [J]. Angew. Chem. Int. Ed., 2019, 58: 13983
doi: 10.1002/anie.201908092
pmid: 31342633
80
Su X R, Li X W, Ong C Y A, et al. Metallization of 3D printed polymers and their application as a fully functional water-splitting system [J]. Adv. Sci., 2019, 6: 1801670
81
You B, Sun Y J. Hierarchically porous nickel sulfide multifunctional superstructures [J]. Adv. Energy Mater., 2016, 6: 1502333
82
Wang X G, Li W, Xiong D H, et al. Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting [J]. J. Mater. Chem., 2016, 4A: 5639
83
Shui J L, Chen C, Li J C M. Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction [J]. Adv. Funct. Mater., 2011, 21: 3357
doi: 10.1002/adfm.201100723
84
Wang R Y, Xu C X, Bi X X, et al. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts [J]. Energy Environ. Sci., 2012, 5: 5281
doi: 10.1039/C1EE02243A
85
Snyder J, Fujita T, Chen M W, et al. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts [J]. Nat. Mater., 2010, 9: 904
doi: 10.1038/nmat2878
pmid: 20953182
86
Li J, Yin H M, Li X B, et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction [J]. Nat. Energy, 2017, 2: 17111
doi: 10.1038/nenergy.2017.111
87
Qiu H J, Fang G, Wen Y R, et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts [J]. J. Mater. Chem., 2019, 7A: 6499
88
Oezaslan M, Heggen M, Strasser P. Size-dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scale [J]. J. Am. Chem. Soc., 2012, 134: 514
doi: 10.1021/ja2088162
pmid: 22129031
89
Xu C X, Zhang Y, Wang L Q, et al. Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction [J]. Chem. Mater., 2009, 21: 3110
doi: 10.1021/cm900244g
90
Chen L Y, Guo H, Fujita T, et al. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions [J]. Adv. Funct. Mater., 2011, 21: 4364
doi: 10.1002/adfm.201101227
91
Tominaka S, Hayashi T, Nakamura Y, et al. Mesoporous PdCo sponge-like nanostructure synthesized by electrodeposition and dealloying for oxygen reduction reaction [J]. J. Mater. Chem., 2010, 20: 7175
doi: 10.1039/c0jm00973c
92
Tominaka S, Nakamura Y, Osaka T. Nanostructured catalyst with hierarchical porosity and large surface area for on-chip fuel cells [J]. J. Power Sources, 2010, 195: 1054
doi: 10.1016/j.jpowsour.2009.08.082
93
Lv H, Xu D D, Sun L Z, et al. Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis [J]. ACS Nano, 2019, 13: 12052
doi: 10.1021/acsnano.9b06339
pmid: 31513375
94
Zeis R, Lei T, Sieradzki K, et al. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold [J]. J. Catal., 2008, 253: 132
doi: 10.1016/j.jcat.2007.10.017
95
Chen C J, Zhu S L, Yang X J, et al. Electro-oxidation of ethylene glycol on nanoporous Ti-Cu amorphous alloy [J]. Electrochim. Acta, 2011, 56: 10253
doi: 10.1016/j.electacta.2011.09.018
96
Liu L F, Pippel E, Scholz R, et al. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties [J]. Nano Lett., 2009, 9: 4352
doi: 10.1021/nl902619q
pmid: 19842671
97
Liu L F, Scholz R, Pippel E, et al. Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying [J]. J. Mater. Chem., 2010, 20: 5621
doi: 10.1039/c0jm00113a
98
Deng K, Xu Y, Yang D D, et al. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation [J]. J. Mater. Chem., 2019, 7A: 9791
99
Yin S L, Wang Z Q, Li C J, et al. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation [J]. Nanoscale Adv., 2020, 2: 1084
doi: 10.1039/D0NA00020E
100
Zhang J T, Liu P P, Ma H Y, et al. Nanostructured porous gold for methanol electro-oxidation [J]. J. Phys. Chem., 2007, 111C: 10382
101
Chen L Y, Lang X Y, Fujita T, et al. Nanoporous gold for enzyme-free electrochemical glucose sensors [J]. Scr. Mater., 2011, 65: 17
doi: 10.1016/j.scriptamat.2011.03.025
102
Liu Z N, Huang L H, Zhang L L, et al. Electrocatalytic oxidation ofD-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions [J]. Electrochim. Acta, 2009, 54: 7286
doi: 10.1016/j.electacta.2009.07.049
103
Liu Z N, Du J G, Qiu C C, et al. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold [J]. Electrochem. Commun., 2009, 11: 1365
doi: 10.1016/j.elecom.2009.05.004
104
Chen L Y, Fujita T, Ding Y, et al. A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing [J]. Adv. Funct. Mater., 2010, 20: 2279
doi: 10.1002/adfm.201000326
105
Ding Y, Chen M W, Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis [J]. J. Am. Chem. Soc., 2004, 126: 6876
doi: 10.1021/ja0320119
pmid: 15174851
106
Wang R Y, Wang C, Cai W B, et al. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures [J]. Adv. Mater., 2010, 22: 1845
doi: 10.1002/adma.200903548
107
Ge X B, Yan X L, Wang R Y, et al. Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing [J]. J. Phys. Chem., 2009, 113C: 7379
108
Yu J S, Ding Y, Xu C X, et al. Nanoporous metals by dealloying multicomponent metallic glasses [J]. Chem. Mater., 2008, 20: 4548
doi: 10.1021/cm8009644
109
Xu C X, Liu A H, Qiu H J, et al. Nanoporous PdCu alloy with enhanced electrocatalytic performance [J]. Electrochem. Commun., 2011, 13: 766
doi: 10.1016/j.elecom.2011.04.007
110
Xu C X, Liu Y Q, Wang J P, et al. Nanoporous PdCu alloy for formic acid electro-oxidation [J]. J. Power Sources, 2012, 199: 124
doi: 10.1016/j.jpowsour.2011.10.075
111
Sa Y J, Lee C W, Lee S Y, et al. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction [J]. Chem. Soc. Rev., 2020, 49: 6632
doi: 10.1039/D0CS00030B
112
Li D, Wu J, Liu T T, et al. Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate [J]. Chem. Eng. J., 2019, 375: 122024
113
Kim H, Lee H, Lim T, et al. Facile fabrication of porous Sn-based catalysts for electrochemical CO2 reduction to HCOOH and syngas [J]. J. Ind. Eng. Chem., 2018, 66: 248
doi: 10.1016/j.jiec.2018.05.036
114
Wang J, Wang H, Han Z Z, et al. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid [J]. Front. Chem. Sci. Eng., 2015, 9: 57
doi: 10.1007/s11705-014-1444-8
115
Welch A J, DuChene J S, Tagliabue G, et al. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst [J]. ACS Appl. Energy Mater., 2019, 2: 164
doi: 10.1021/acsaem.8b01570
116
Morimoto M, Takatsuji Y, Hirata K, et al. Visualization of catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode [J]. Electrochim. Acta, 2018, 290: 255
doi: 10.1016/j.electacta.2018.09.080
117
Zhao Y, Liu X L, Chen D C, et al. Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction [J]. Sci. China Mater., 2021, 64: 1900
doi: 10.1007/s40843-020-1583-4
118
Yan W Y, Zhang C, Liu L. Hierarchically porous CuAg via 3D printing/dealloying for tunable CO2 reduction to syngas [J]. ACS Appl. Mater. Interfaces, 2021, 13: 45385
doi: 10.1021/acsami.1c10564
119
Yang P P, Zhang X L, Gao F Y, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels [J]. J. Am. Chem. Soc., 2020, 142: 6400
doi: 10.1021/jacs.0c01699
120
Zhong M, Tran K, Min Y M, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning [J]. Nature, 2020, 581: 178
doi: 10.1038/s41586-020-2242-8
121
Nazemi M, El-Sayed M A. Electrochemical synthesis of ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold nanocatalysts with tunable plasmonic properties [J]. J. Phys. Chem. Lett., 2018, 9: 5160
doi: 10.1021/acs.jpclett.8b02188
122
Pang F J, Wang Z F, Zhang K, et al. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction [J]. Nano Energy, 2019, 58: 834
doi: 10.1016/j.nanoen.2019.02.019
123
Wang X J, Luo M, Lan J, et al. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction [J]. Adv. Mater., 2021, 33: 2007733
124
Xu W C, Fan G L, Chen J L, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions [J]. Angew. Chem. Int. Ed., 2020, 59: 3511
doi: 10.1002/anie.201914335
125
Pang F J, Wang F, Yang L T, et al. Hierarchical nanoporous Pd1Ag1 alloy enables efficient electrocatalytic nitrogen reduction under ambient conditions [J]. Chem. Commun., 2019, 55: 10108
doi: 10.1039/C9CC04460D
126
Fan G L, Xu W C, Li J H, et al. Nanoporous NiSb to enhance nitrogen electroreduction via tailoring competitive adsorption sites [J]. Adv. Mater., 2021, 33: 2101126
127
Wang H J, Yu H J, Wang Z Q, et al. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia [J]. Small, 2019, 15: 1804769
128
Yang Y J, Wang S Q, Wen H M, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation [J]. Angew. Chem. Int. Ed., 2019, 58: 15362
doi: 10.1002/anie.201909770
pmid: 31441563
129
Xiao L, Zhu S L, Liang Y Q, et al. Effects of hydrophobic layer on selective electrochemical nitrogen fixation of self-supporting nanoporous Mo4P3 catalyst under ambient conditions [J]. Appl. Catal., 2021, 286B: 119895
130
Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27: 3413
pmid: 16504284
131
Geng Z, Cui Z D, Li Z Y, et al. Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite [J]. J. Mater. Chem., 2015, 3B: 3738
132
Geng Z, Cui Z D, Li Z Y, et al. Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating [J]. Mater. Sci. Eng., 2016, C58: 467
133
Wu S L, Liu X M, Yeung K W K, et al. Biomimetic porous scaffolds for bone tissue engineering [J]. Mater. Sci. Eng., 2014, R80: 1
134
Niinomi M. Mechanical properties of biomedical titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 231
135
Li Q, Niinomi M, Nakai M, et al. Improvements in the superelasticity and change in deformation mode of β-type TiNb24Zr2 alloys caused by aging treatments [J]. Metall. Mater. Trans., 2011, 42A: 2843
136
Deng S H, Yang X J, Zhu S L, et al. Biomedical properties of porous NiTi shape memory alloy and its prospect in medical application [J]. Heat Treat. Met., 2003, 28(12): 12
Liu S M, Yang X J, Cui Z D, et al. Effect of voltage on properties of the ceramic coatings prepared by micro-arc oxidation on titanium [J]. Mater. Rep., 2011, 25(16): 8
Chen M F, Yang X J, He F, et al. Effect of NaOH concentration on formation of bone-like apatite layer on NiTi shape memory alloy [J]. Acta Metall. Sin., 2003, 39: 859
Hu R X, Yang X J, Chen M F, et al. Optimization of bioactive layer processing using chemical method on the surface of NiTi SMA [J]. Heat Treat. Met., 2003, 28(10): 42
Li Y X, Cui Z D, Yang X J, et al. Corrosion behavior of porous Ti-24Nb-4Zr alloy in different simulated body fluids [J]. Adv. Mater. Res., 2012, 399-401: 1577
143
Liang C Y, Wang H S, Yang J J, et al. Femtosecond laser-induced micropattern and Ca/P deposition on Ti implant surface and its acceleration on early osseointegration [J]. ACS Appl. Mater. Interfaces, 2013, 5: 8179
doi: 10.1021/am402290e
144
Lai M, Gao Y, Yuan B, et al. Effect of pore structure regulation on the properties of porous TiNbZr shape memory alloys for biomedical application [J]. J. Mater. Eng. Perform., 2015, 24: 136
doi: 10.1007/s11665-014-1299-7
145
Kuczyńska-Zemła D, Kijeńska-Gawrońska E, Pisarek M, et al. Effect of laser functionalization of titanium on bioactivity and biological response [J]. Appl. Surf. Sci., 2020, 525: 146492
146
Harrysson O L A, Cansizoglu O, Marcellin-Little D J, et al. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology [J]. Mater. Sci. Eng., 2008, C28: 366
147
Zhang J H, Sun Y Y, Guo A L, et al. Research progress of 3D printing magnesium-based biomaterials for bone defect repair [J]. Chin. J. Bone Joint Surg., 2021, 14: 826
Kiani F, Wen C E, Li Y C. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—A review [J]. Acta Biomater., 2020, 103: 1
doi: 10.1016/j.actbio.2019.12.023
149
Anvari-Yazdi A F, Tahermanesh K, Hadavi S M M, et al. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys [J]. Mater. Sci. Eng., 2016, C69: 584
150
Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials, 2009, 30: 484
doi: 10.1016/j.biomaterials.2008.10.021
pmid: 19000636
151
Li Y G, Jahr H, Zhou J, et al. Additively manufactured biodegradable porous metals [J]. Acta Biomater., 2020, 115: 29
doi: S1742-7061(20)30478-5
pmid: 32853809
152
Gu X N, Li N, Zhou W R, et al. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy [J]. Acta Biomater., 2011, 7: 1880
doi: 10.1016/j.actbio.2010.11.034
pmid: 21145440
153
Yazdimamaghani M, Razavi M, Vashaee D, et al. Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering [J]. Mater. Lett., 2014, 132: 106
doi: 10.1016/j.matlet.2014.06.036
154
Lai Y X, Li Y, Cao H J, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect [J]. Biomaterials, 2019, 197: 207
doi: S0142-9612(19)30019-5
pmid: 30660996
155
Wang J L, Wu Y H, Li H F, et al. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits [J]. Biomaterials, 2018, 157: 86
doi: S0142-9612(17)30793-7
pmid: 29248806
156
Zheng Y F, Xia D D, Shen Y N, et al. Additively manufactured biodegrabable metal implants [J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
Li Y, Jahr H, Pavanram P, et al. Additively manufactured functionally graded biodegradable porous iron [J]. Acta Biomater., 2019, 96: 646
doi: S1742-7061(19)30493-3
pmid: 31302295
158
Nie Y, Chen G, Peng H B, et al. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds [J]. Acta Biomater., 2021, 121: 724
doi: 10.1016/j.actbio.2020.12.028
159
Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals—Definition, criteria, and design [J]. Adv. Funct. Mater., 2019, 29: 1805402
160
Li Y, Pavanram P, Zhou J, et al. Additively manufactured biodegradable porous zinc [J]. Acta Biomater., 2020, 101: 609
doi: S1742-7061(19)30713-5
pmid: 31672587
161
Moon S K, Kim C K, Joo U H, et al. Biological evaluation of micro-nanoporous layer on Ti-Ag alloy for dental implant [J]. Int. J. Mater. Res., 2012, 103: 749
doi: 10.3139/146.110676
162
Xiong Y Z, Wang W, Gao R N, et al. Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application [J]. Mater. Des., 2020, 195: 108994
163
Chahine G, Koike M, Okabe T, et al. The design and production of Ti-6Al-4V ELI customized dental implants [J]. JOM, 2008, 60(11): 50
164
He F, Zhang X, Peng W, et al. Research progress on porous tantalum coating in dental implants [J]. J. Dalian Med. Univ., 2019, 41: 458
Balla V K, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties [J]. Acta Biomater., 2010, 6: 3349
doi: 10.1016/j.actbio.2010.01.046
pmid: 20132912
166
Wang Q, Zhang H, Li Q J, et al. Biocompatibility and osteogenic properties of porous tantalum [J]. Exp. Ther. Med., 2015, 9: 780
pmid: 25667628
167
Lee J W, Wen H B, Gubbi P, et al. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study [J]. Clin. Oral Implants Res., 2018, 29: 164
168
Wu L J, Dong Y W, Yao L T, et al. Nanoporous tantalum coated zirconia implant improves osseointegration [J]. Ceram. Int., 2020, 46: 17437
doi: 10.1016/j.ceramint.2020.04.038