Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (9): 1123-1132    DOI: 10.11900/0412.1961.2016.00051
Orginal Article Current Issue | Archive | Adv Search |
STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY
Yun CAI1,Chaoyang SUN1(),Li WAN2,Daijun YANG2,Qingjun ZHOU2,Zexing SU1
1 School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Capital Aerospace Machinery Company, Beijing 100076, China
Cite this article: 

Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY. Acta Metall Sin, 2016, 52(9): 1123-1132.

Download:  HTML  PDF(1457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloys are considered as one of the lightest structural metallic materials with excellent properties such as high specific strength, superior damping characteristics and electromagnetic shielding performance. In order to improve the mechanical properties of magnesium alloys, the hot rolling, hot extrusion and other hot forming processes are often introduced to produce the high performance parts. Both of the two softening mechanisms, dynamic recovery and dynamic recrystallization (DRX), occur during the hot deformation. As an important softening mechanism in hot processing, DRX is beneficial to obtaining fine grains structure, eliminating defects and improving mechanical properties for magnesium alloys. In this work, isothermal compression tests of AZ80 magnesium alloy were conducted on Gleeble thermo-mechanical simulator in the temperature range of 200 to 400 ℃ and strain rate range of 0.001 to 1 s-1. In view of the dynamic hardening and softening mechanisms, the softening behavior of AZ80 magnesium alloy, dominated by dynamic recrystallization, was depicted. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution which was indicated by the strain rate sensitivity value based on the dynamic material model. To quantify the dynamic recrystallization softening behavior by the strain rate sensitivity (SRS) value, the SRS value distribution maps were constructed depending on various temperatures and strain rates. Therefore, the critical conditions and evolution process were studied in terms of temperatures and strain rates, while features of the SRS value distribution maps at different strains were deeply investigated. It can be concluded that the value of dynamic recrystallization critical condition decreases and dynamic recrystallization volume fraction increases when the temperature increases and strain rate decreases during the deformation. The strain rate sensitivity was positive correlated with the dynamic recrystallization volume fraction. It has been verified effectively by the analysis of microstructure that the region in which the strain rate sensitivity value is above 0.21 corresponds to the higher dynamic recrystallization volume fraction and lower strain rate.

Key words:  magnesium alloy      dynamic recrystallization      deformation behavior      strain rate sensitivity     
Received:  01 February 2016     
Fund: Supported by Joint Fund of National Natural Science Foundation of China and Chinese Academy of Engineering Physics (No.U1330121), National Natural Science Foundation of China (No.51575039) and Open Research Fund of Key Laboratory of High Performance Complex Manufacturing, Central South University (No.Kfkt2015-01)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00051     OR     https://www.ams.org.cn/EN/Y2016/V52/I9/1123

Fig.1  Typical stress-strain and θ-ε curves of dynamic recovery of AZ80 magnesium alloy at strain rate 0.1 s-1 and temperature 250 ℃ (θ—work-hardening rate, σ—true stress, ε—true strain, σsat—saturation stress, σp—peak stress, σc—critical stress, σss—steady-state stress, σ0—initial stress, εc—critical strain, εp—peak strain, σDRV—dynamic recovery (DRV) curve, σDRX—dynamic recrystallization (DRX) curve, Δσ—softening stress, KM model—Kocks-Mecking model)
Fig.2  Flow stress-strain curves of AZ80 magnesium alloy under strain rates of 0.001 s-1 (a), 0.01 s-1 (b), 0.1 s-1 (c) and 1 s-1 (d)
Fig.3  Curves of θ-σ (a) and -(?θ/?σ)-σ (b) of AZ80 magnesium alloy at strain rate 0.1 s-1 and temperature 250 ℃
Fig.4  Curves of θ-σ (a, c) and -?θ/?σ)-σ (b, d) of AZ80 magnesium alloy at 0.01 s-1 and different temperatures (a, b), and different strain rates and 350 ℃ (c, d)
Fig.5  Relationships among σss, σc, σsat and σp
Fig.6  Determination of k and n of AZ80 magnesium alloy in dynamic recrystallization kinetics model (XDRX—volume fraction of DRX, k—material constant, n—Avrami constant)
Fig.7  XDRX evolution of AZ80 magnesium alloy at various conditions ((2)~(6)—verify the dynamic recrystallization kinetic model, (2)—Fig.9b, (3)—Fig.9c, (4)—Fig.9d, (5)—Fig.9e, (6)—Fig.9f)
(a) strain rate 0.001 s-1 (b) temperature 400 ℃
Fig.8  SRS values m at the strains of 0.6 (a) and 0.9 (b) for AZ80 magnesium alloy ((2)~(6)—verify the SRS values distribution map, (2)—Fig.9b, (3)—Fig.9c, (4)—Fig.9d, (5)—Fig.9e, (6)—Fig.9f)
Fig.9  Microstructures of AZ80 magnesium alloy at different conditions
(a) initial (b) 250 ℃, 0.001 s-1, m=0.27 (Fig.7 (2)
and Fig.8 (2))(c) 300 ℃, 0.001 s-1, m=0.30 (Fig.7 (3) and Fig.8 (3)) (d) 400 ℃, 0.001 s-1, m=0.26 (Fig.7 (4) and Fig.8 (4))
(e) 400 ℃, 0.1 s-1, m=0.12 (Fig.7 (5) and Fig.8 (5)) (f) 400 ℃, 1 s-1, m=0.04 (Fig.7 (6) and Fig.8 (6))
[1] Yang Z, Li J P, Zhang J X, Lorimer G W, Robson J.Acta Metall Sin (Engl Lett), 2008; 21: 313
[2] Sun C Y, Luan J D, Liu G, Li R, Zhang Q D.Acta Metall Sin, 2012; 48: 853
[2] (孙朝阳, 栾京东, 刘赓, 李瑞, 张清东. 金属学报, 2012; 48: 853)
[3] Aghion E, Bronfin B, Eliezer D.J Mater Process Technol, 2001; 117: 381
[4] Lu S Q, Wang K L, Li X, Liu S B.Acta Metall Sin, 2014; 50: 1128
[4] (鲁世强, 王克鲁, 李鑫, 刘诗彪. 金属学报, 2014; 50: 1128)
[5] Mostafaei M A, Kazeminezhad M.Mater Sci Eng, 2012; A544: 88
[6] Jorge Jr A M, Regone W, Balancin O.J Mater Process Technol, 2003; 142: 415
[7] Liang H Q, Guo H Z, Ning Y Q, Yao Z K, Zhao Z L.Acta Metall Sin, 2014; 50: 871
[7] (梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 金属学报, 2014; 50: 871)
[8] Galiyev A, Kaibyshev R, Gottstein G.Acta Mater, 2001; 49: 1199
[9] Yang X Y, Zhang Z L, Zhang L, Wu X X, Wang J.Chin J Nonferrous Met, 2011; 21: 1801
[9] (杨续跃, 张之岭, 张雷, 吴新星, 王军. 中国有色金属学报, 2011; 21: 1801)
[10] Li H Z, Wei X Y, Ou Yang J, Jiang J, Li Y.Trans Nonferrous Met Soc Chin, 2013; 23: 3180
[11] Luan N, Li L X, Li G Y, Zhong Z H.Chin J Nonferrous Met, 2007; 17: 1678
[11] (栾娜, 李落星, 李光耀, 钟志华. 中国有色金属学报, 2007; 17: 1678)
[12] Yang Y S, Yang M, Guo J Q.Hot Work Technol, 2011; 40(24): 82
[12] (杨永顺, 杨明, 郭俊卿. 热加工工艺, 2011; 40(24): 82)
[13] Xu Y, Hu L X, Sun Y.J Alloys Compd, 2013; 580: 262
[14] Kwak T Y, Kim W J.Mater Sci Eng, 2014; A615: 222
[15] Zhou H T, Li Q B, Zhao Z K, Liu Z C, Wen S F, Wang Q D.Mater Sci Eng, 2010; A527: 2022
[16] Huang S H, Zhao Z D, Xia Z X, Cai H Y, Kang F, Hu Z K, Shu D Y.Rare Met Mater Eng, 2010; 39: 848
[16] (黄树海, 赵祖德, 夏志新, 蔡海艳, 康凤, 胡传凯, 舒大禹. 稀有金属材料与工程, 2010; 39: 848)
[17] Bussiba A, Ben Artzy A, Shtechman A, Ifergan S, Kupiec M.Mater Sci Eng, 2001; A302: 56
[18] Lin Y C, Chen X M, Wen D X, Chen M S.Comput Mater Sci, 2014; 83: 282
[19] Estrin Y, Mecking H.Acta Mater, 1984; 32: 57
[20] Mecking H, Kocks U F.Acta Mater, 1981; 29: 1865
[21] Bambach M.Acta Mater, 2013; 61: 6222
[22] Liang H Q, Guo H Z, Ning Y Q, Peng X N, Qin C, Shi Z F, Nan Y.Mater Des, 2014; 63: 789
[23] Poliak E I, Jonas J J.Acta Mater, 1996; 44: 127
[24] He Y B, Pan Q L, Tan Y J, Liu X Y, Li W B.Chin J Nonferrous Met, 2011; 21: 1205
[24] (何运斌, 潘清林, 覃银江, 刘晓艳, 李文斌. 中国有色金属学报, 2011; 21: 1205)
[25] Ponge D, Gottstein G.Acta Mater, 1998; 46: 69
[26] Picu R C.Acta Mater, 2004; 52: 3447
[27] Les P, Stuewe H P, Zehetbauer M. Mater Sci Eng, 1997;A234-236: 453
[28] Tang W N, Chen R S, Han E-H.Acta Metall Sin, 2006; 42: 1096
[28] (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)
[29] Cao Y, Di H S, Zhang J Q, Ma T J, Zhang J C.Acta Metall Sin, 2013; 49: 811
[29] (曹宇, 邸洪双, 张敬奇, 马天军, 张洁岑. 金属学报, 2013; 49: 811)
[30] Les P, Stuewe H P, Zehetbauer M. Mater Sci Eng, 1997; A234-236: 453
[31] Liang H Q, Nan Y, Ning Y Q, Li H, Zhang J L, Shi Z F, Guo H Z.J Alloys Compd, 2015; 632: 478
[32] Yang F Q, Song R B, Zhang C.Proc Eng, 2014; 81: 456
[33] Biswas A, Singh G, Sarkar S K, Krishnan M, Ramamurty U.Intermetallics, 2014; 54: 69
[34] Lin Y C, Wen D X, Deng J, Liu G, Chen J.Mater Des, 2014; 59: 115
[35] Jenab A, Karimi Taheri A.Int J Mech Sci, 2014; 78: 97
[36] Rao K P, Zhong T, Prasad Y V R K, Suresh K, Gupta M.Mater Sci Eng, 2015; A644: 184
[37] Lv B J, Peng J, Shi D W, Tang A T, Pan F S.Mater Sci Eng, 2013; A560: 727
[38] Sun C Y, Liu G, Zhang Q D, Li R, Wang L L.Mater Sci Eng, 2014; A595: 92
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[4] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[5] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[9] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[10] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[11] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[13] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[14] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[15] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
No Suggested Reading articles found!