Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (2): 191-204    DOI: 10.11900/0412.1961.2020.00143
Current Issue | Archive | Adv Search |
Grain Structure and Metallurgical Defects Regulation of Selective Laser Melted René 88DT Superalloy
LIU Jian1,2, PENG Qin1,2, XIE Jianxin1,2()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Key Laboratory for Advanced Materials Processing, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LIU Jian, PENG Qin, XIE Jianxin. Grain Structure and Metallurgical Defects Regulation of Selective Laser Melted René 88DT Superalloy. Acta Metall Sin, 2021, 57(2): 191-204.

Download:  HTML  PDF(6355KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Columnar grain and hot crack restrict the performance of laser melting deposited René 88DT superalloy when applied to turbine disks, requiring equiaxed grain to improve the fatigue property. Selective laser melting can fabricate material with low composition segregation, reduced defects, and equiaxed or near-equiaxed grains due to the fast cooling rate and vastly varied local heat flow direction during processing. In this study, a selective laser melted René 88DT was fabricated under variable processing parameters. The formation mechanism and control methods of grain structure and metallurgical defects were investigated. Results showed that changing the processing parameters can affect the preferred growth direction of crystal; thus, affecting the grain morphology and size. Processed with low heat input and 67° scan vectors rotation between deposited layers, cellular dendrites with different orientations grow competitively with each other, leading to the formation of near-equiaxed grains. The cellular dendrites can grow epitaxially across multiple deposited layers due to high heat input and 0° scan vector rotation, forming columnar grains. The columnar grains with a relatively low aspect ratio can be fabricated with 90° scan vectors rotation. However, anisotropy exists between the two orthogonal scanning directions due to the shielding effect of metal vapor dust. The primary defects in specimens are solidification cracks along grain boundaries caused by remelting of low-melting-point eutectic. Specimens with equiaxed grains showed much better ability in preventing solidification cracks from propagation than that with columnar grains. The defect density in the columnar grains is about 21 times higher than the equiaxed grains. Suitable processing conditions for selective laser melted René 88DT superalloys are low heat input and 67° scan vectors rotation based on the forming quality and service conditions.

Key words:  selective laser melting      René 88DT superalloy      grain structure      metallurgical defect      processing parameter     
Received:  06 May 2020     
ZTFLH:  TN249  
Fund: Fundamental Research Funds for the Central Universities(FRF-TP-18-092A1)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00143     OR     https://www.ams.org.cn/EN/Y2021/V57/I2/191

Fig.1  Morphology of René 88DT superalloy powder particles
Specimen No.PVADefect density / %
Wmm·s-1(°)Incomplete fusionPoreCrack
1200960900.5130.0250.054
2250960900.0180.0110.107
33009609000.0150.403
43509609000.0170.485
54009609000.0230.771
63007209000.0500.646
73008409000.0180.397
830010809000.0270.187
930012009000.0120.069
10300960000.0302.213
113009606700.0120.101
Table 1  Experimental parameters, defect types and defect densities of selective laser melted specimens
Fig.2  Schematics of scan strategies with different scan vector rotations between layers
Fig.3  Defect morphologies of selective laser melted René 88DT specimens
Fig.4  Crack morphologies of selective laser melted René 88DT No.5 specimen
RegionCrCoMoWNbAlTiONi
Matrix15.8312.315.153.721.772.914.17-54.14
Crack11.5610.543.362.310.402.392.8720.7543.73
Table 2  EDS results of selective laser melted René 88DT superalloy specimen
Fig.5  Deposition track morphologies in XOZ section fabricated with different scan vector rotations (The dash lines indicate the boundaries of deposition tracks, and arrows indicate the growth directions of cellular dendrites, the same bellow)
Fig.6  Grain structures of selective laser melted René 88DT specimens fabricated with different scan vectors rotation in YOZ sections (a, d, g), XOZ sections (b, e, h), and XOY sections (c, f, i)
Fig.7  Deposition track morphologies in XOZ section fabricated with laser powers of 200 W (a), 300 W (b), and 400 W (c), and changes of the ratio of depth to width and curvature radius with laser power (d)
Fig.8  Morphology of unmelted powders in selective laser melted René 88DT specimen
Fig.9  Grain structures of selective laser melted René 88DT specimens fabricated with different laser powers in YOZ sections (a, d, g), XOZ sections (b, e, h), and XOY sections (c, f, i)
Fig.10  Deposition track morphologies in XOZ section fabricated with scanning speeds of 720 mm/s (a), 960 mm/s (b), and 1200 mm/s (c), and changes of the ratio of depth to width and curvature radius with scanning speed (d)
Fig.11  Grain structures of selective laser melted René 88DT specimens fabricated with different scanning speeds in YOZ sections (a, d, g), XOZ sections (b, e, h), and XOY sections (c, f, i)
Fig.12  Low (a) and high (b) magnified SEM images, and TEM image (c) of selective laser melted René 88DT No.3 specimen
Fig.13  Changes of the ratio of depth to width and curvature radius with volume energy density (E)
Fig.14  Schematics showing the dendritic growth and grain evolution of selective laser melted René 88DT superalloy under A=90° and heat inputs of 47 J/mm3 (a), 57 J/mm3 (b), and 95 J/mm3 (c) (The red arrows indicate the directions of maximum temperature gradient)
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 256
2 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
3 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
张国庆, 张义文, 郑 亮等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
4 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT [J]. Mater. Sci. Eng., 2002, A332: 318
5 Hu D Y, Wang T, Ma Q H, et al. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96 [J]. Int. J. Fatigue, 2019, 118: 237
6 Shi Y, Yang D D, Yang X G, et al. The effect of inclusion factors on fatigue life and fracture-mechanics-based life method for a P/M superalloy at elevated temperature [J]. Int. J. Fatigue, 2020, 131: 105365
7 Ning Y Q, Zhou C, Liang H Q, et al. Abnormal flow behavior and necklace microstructure of powder metallurgy superalloys with previous particle boundaries (PPBs) [J]. Mater. Sci. Eng., 2016, A652: 84
8 Benjamin J S, Larson J M. Powder metallurgy techniques applied to superalloys [J]. J. Aircr., 1977, 14: 613
9 Chlebus E, Gruber K, Kuźnicka B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Mater. Sci. Eng., 2015, A639: 647
10 Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties [J]. J. Alloys Compd., 2014, 585: 713
11 Liang Y J, Cheng X, Wang H M. A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification [J]. Acta Mater., 2016, 118: 17
12 Zhao X M, Lin X, Chen J. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming [J]. Mater. Sci. Eng., 2009, A504: 129
13 Zhao X M, Chen J, He F, et al. The cracking mechanism of Rene88DT superalloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 216
赵晓明, 陈 静, 何 飞等. 激光快速成形Rene88DT高温合金开裂机理研究 [J]. 稀有金属材料与工程, 2007, 36: 216
14 Li N, Kong H P, Du B R, et al. Analysis of microstructure and defects of FGH96 superalloy manufactured by laser rapid prototyping [J]. Fail. Anal. Prev., 2016, 11: 124
李 楠, 孔焕平, 杜博睿等. 激光快速成型FGH96高温合金的显微组织及缺陷分析 [J]. 失效分析与预防, 2016, 11: 124
15 Zhang H Y, Zhang A F, He B, et al. Investigation on the microstructure and segregation of superalloy FGH96 by direct laser forming [J]. Appl. Mech. Mater., 2014, 464: 58
16 Wen S, Dong A P, Lu Y L, et al. Finite element simulation of the temperature field and residual stress in GH536 superalloy treated by selective laser melting [J]. Acta Metall. Sin., 2018, 54: 393
文 舒, 董安平, 陆燕玲等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟 [J]. 金属学报, 2018, 54: 393
17 Wu H Y, Zhang D, Yang B B, et al. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36: 7
18 Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing [J]. Int. Mater. Rev., 2016, 61: 315
19 Huang W D. The research progress of 3D printing technology [J]. J. New Ind., 2016, 6(3): 53
黄卫东. 材料3D打印技术的研究进展 [J]. 新型工业化, 2016, 6(3): 53
20 Yang H O, Zhao Y F, Xu J J, et al. As-deposited microstructures of Rene88DT nickel-base superalloy by laser solid forming [J]. J. Netshape Form. Eng., 2019, 11(4): 9
杨海欧, 赵宇凡, 许建军等. 激光立体成形Rene88DT镍基高温合金沉积态组织研究 [J]. 精密成形工程, 2019, 11(4): 9
21 Liu S, Zhang X, Yu H X, et al. Effect of laser melting deposition process on microstructure and property for FGH96 [J]. Aeronaut. Manuf. Technol., 2019, 62(1-2): 72
刘 帅, 张 雪, 于海鑫等. FGH96激光熔化沉积成形过程对组织与性能的影响 [J]. 航空制造技术, 2019, 62(1-2): 72
22 Guo J T, Zhou L Z, Qin X Z. Phase transformations and their mechanisms in Fe- and Ni-base superalloys [J]. Chin. J. Nonferrous Met., 2011, 21: 476
郭建亭, 周兰章, 秦学智. 铁基和镍基高温合金的相变规律与机理 [J]. 中国有色金属学报, 2011, 21: 476
23 Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
24 Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy [J]. J. Alloys Compd., 2014, 615: 338
25 Ladewig A, Schlick G, Fisser M, et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process [J]. Addit. Manuf., 2016, 10: 1
26 Wang H M. Materials􀆳 fundamental issues of laser additive manufacturing for high-performance large metallic component [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
27 Tin S, Pollock T M. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbide precipitation and rayleigh numbers [J]. Metall. Mater. Trans., 2003, 34A: 1953
28 Zhong M L, Sun H Q, Liu W J, et al. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy [J]. Scr. Mater., 2005, 53: 159
29 Zhang J, Li S, Wei Q S, et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting [J]. Chin. J. Rare Met., 2015, 39: 961
张 洁, 李 帅, 魏青松等. 激光选区熔化Inconel 625合金开裂行为及抑制研究 [J]. 稀有金属, 2015, 39: 961
30 Çam G, Koçak M. Progress in joining of advanced materials [J]. Int. Mater. Rev., 1998, 43: 1
31 Yang J, Huang W D, Chen J, et al. Residual stress on laser rapid forming metal part [J]. Appl. Laser, 2004, 24: 5
杨 健, 黄卫东, 陈 静等. 激光快速成形金属零件的残余应力 [J]. 应用激光, 2004, 24: 5
[1] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[5] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[6] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[7] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[8] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[9] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[10] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[11] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[12] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[13] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[14] LIN Yan, SI Cheng, XU Jingyu, LIU Ze, ZHANG Cheng, LIU Lin. Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(11): 1509-1518.
[15] WANG Kaidong, LIU Yunzhong, ZHAN Qiangkun, HUANG Bin. Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(10): 1281-1291.
No Suggested Reading articles found!