Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (6): 898-908    DOI: 10.11900/0412.1961.2019.00382
Current Issue | Archive | Adv Search |
Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-
CAO Fengting1,2, WEI Jie1, DONG Junhua1(), KE Wei1, WANG Tiegang2, FAN Qixiang2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Tianjin Key Laboratory of High Speed Cutting and Precision Machining, School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
Download:  HTML  PDF(2810KB) 
Export:  BibTeX | EndNote (RIS)      

The corrosion of steel rebar in concrete will be induced once the passive film is destroyed by chlorides or carbonation. Several techniques have been employed to reduce the corrosion so far. Among them, adding inhibitors is effective one because of its advantages, such as high efficiency and easy handling. 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), a typical organic phosphonic acid, is a low toxic corrosion inhibitor for steel and iron in neutral aerobic environment. This compound was first used as scale inhibitor in water treatment industry, such as cooling water circulation system. The molecule of HEDP has two phosphate groups, making it a powerful chelating ability with metallic ions. However, most of the current studies of HEDP focus on neutral or near-neutral systems, and there are few reports on the corrosion inhibition of steel reinforcement in alkaline environment. Therefore, it is not clear whether HEDP can play the role of corrosion inhibitor by protecting the passive film and resist foreign corrosive Cl-. In this work, the inhibition effect of HEDP towards 20SiMn steel was investigated in simulated concrete pore solution contaminated by Cl- (Sat.Ca(OH)2+1 mol/L NaCl) by electrochemical methods (corrosion potential, potentiodynamic polarization curves, EIS and Mott-Schottcky curves) and surface analysis techniques (SEM, XPS). The results showed that HEDP was a mixed inhibitor and its inhibition efficiency increased first and then decreased with the increase of concentration, the optimal concentration is 1.441×10-4 mol/L . At the optimal concentration, HEDP could obviously enlarge the passive region, prolong the passive period of 20SiMn steel from 6 h to 9 h , and improve the charge-transfer resistance significantly with the inhibition efficiency around 46.45%~59.78%. When pitting corrosion occurs, HEDP could hinder its development with the inhibition efficiency over 93%. The inhibition mechanism was the preferential adsorption of HEDP over Cl- by forming a complete adsorption film outside the passive film of the steel.

Key words:  HEDP      corrosion      corrosion inhibitor      adsorption      simulated concrete pore solution     
Received:  11 November 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(U1867216);National Natural Science Foundation of China(51501201);National Natural Science Foundation of China(51801219)
Corresponding Authors:  DONG Junhua     E-mail:

Cite this article: 

CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-. Acta Metall Sin, 2020, 56(6): 898-908.

URL:     OR

Fig.1  Potentiodynamic polarization curves of 20SiMn steel in 1 mol/L NaCl saturated Ca(OH)2 solution with different concentrations of 1-hydroxyethane-1,1-diphosphonic acid (HEDP) (E—potential, i—current density)
Fig.2  EIS of 20SiMn steel in 1 mol/L NaCl saturated Ca(OH)2 solution with different concentrations of HEDP
(a) Nyquist plots
(b) Bode-impedance modulus plots
(c) Bode-phase angle plots
Fig.3  EIS of 20SiMn steel immersed in 1 mol/L NaCl saturated Ca(OH)2 solution
(a) Nyquist plots (Inset shows the enlarged Nyquist plots at 9 and 24 h)
(b) Bode-impedance modulus plots
(c) Bode-phase angle plots
Fig.4  EIS of 20SiMn steel immersed in 1 mol/L NaCl saturated Ca(OH)2 solution with 1.441×10-4 mol/L HEDP
(a) Nyquist plots
(b) Bode-impedance modulus plots
(c) Bode-phase angle plots
Fig.5  The equivalent circuits used to fit the EIS of passive stage (a), and pitting corrosion stage without (b) and with (c) inductance arc (Rs—the solution resistance, Qf—the constant phase element (CPE) of the film, Rf —the resistance of passive film, Qct—the CPE of the electric double layer, Rct—the charge transfer resistance, L—the equivalent inductance of pitting corrosion, RL—the equivalent resistance of pitting corrosion)








10-4 F·cm-2



104 Ω·cm2


10-5 F·cm-2



105 Ω·cm2


105 H·cm2


103 Ω·cm2



Table 1  Fitting results of EIS of 20SiMn steel at different immersion time in 1 mol/L NaCl saturated Ca(OH)2 solution without and with 1.441×10-4 mol/L HEDP
Fig.6  Curves of Rf and Rct of 20SiMn steel with immersion time in 1 mol/L NaCl saturated Ca(OH)2 solution without and with 1.441×10-4 mol/L HEDP
Fig.7  Corrosion potentials (Ecorr) of 20SiMn steel immersed in 1 mol/L NaCl saturated Ca(OH)2 solution without and with 1.441×10-4 mol/L HEDP
Fig.8  SEM images of 20SiMn steel observed after removal of corrosion products immersed for 7 h in 1 mol/L NaCl saturated Ca(OH)2 solution without (a) and with (b) 1.441×10-4 mol/L HEDP
Fig.9  Mott-Schottky curves of 20SiMn steel immersed in 1 mol/L NaCl saturated Ca(OH)2 solution without and with 1.441×10-4 mol/L (CSC—capacitance of space charge layer)
Fig.10  Deconvoluted XPS spectra of Cl2p (a), P2p (b), Fe2p (c) and O1s (d) of 20SiMn steel immersed for 1 h in 1 mol/L NaCl saturated Ca(OH)2 solution without and with 1.441×10-4 mol/L HEDP
[1] Biezma M V, San Cristóbal J R. Methodology to study cost of corrosion [J]. Corros. Eng. Sci. Technol., 2005, 40: 344
doi: 10.1179/174327805X75821
[2] Page C L, Treadaway K W J. Aspects of the electrochemistry of steel in concrete [J]. Nature, 1982, 297: 109
doi: 10.1038/297109a0
[3] Jones S, Martys N, Lu Y, et al. Simulation studies of methods to delay corrosion and increase service life for cracked concrete exposed to chlorides [J]. Cem. Concr. Compos., 2015, 58: 59
doi: 10.1016/j.cemconcomp.2014.12.014
[4] Cao F T, Wei J, Dong J H, et al. Corrosion behavior of 20SiMn steel rebar in carbonate/bicarnonate solutions with the same pH value [J]. Acta Metall. Sin., 2014, 50: 674
doi: 10.3724/SP.J.1037.2014.00041
曹凤婷, 魏 洁, 董俊华等. 20SiMn钢在恒定pH值的碳酸盐溶液中的腐蚀行为 [J]. 金属学报, 2014, 50: 674
doi: 10.3724/SP.J.1037.2014.00041
[5] Andrade C, Page C L. Pore solution chemistry and corrosion in hydrated cement systems containing chloride salts: A study of cation specific effects [J]. Br. Corros. J., 1986, 21: 49
doi: 10.1179/000705986798272415
[6] Pourbaix M. Some applications of potential-pH diagrams to the study of localized corrosion [J]. J. Electrochem. Soc., 1976, 123: C25
[7] Abd El Haleem S M, El Wanees S A, Bahgat A. Environmental factors affecting the corrosion behaviour of reinforcing steel. VI. Benzotriazole and its derivatives as corrosion inhibitors of steel [J]. Corros. Sci., 2014, 87: 321
doi: 10.1016/j.corsci.2014.06.043
[8] Zhou X, Yang H Y, Wang F H. Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution [J]. Corros. Sci., 2012, 54: 193
doi: 10.1016/j.corsci.2011.09.018
[9] Felhősi I, Keresztes Z, Kármán F H, et al. Effects of bivalent cations on corrosion inhibition of steel by 1-hydroxyethane-1,1-diphosphonic acid [J]. J. Electrochem. Soc., 1999, 146: 961
doi: 10.1149/1.1391706
[10] Kármán F H, Felhösi I, Kálman E, et al. The role of oxide layer formation during corrosion inhibition of mild steel in neutral aqueous media [J]. Electrochim. Acta, 1998, 43: 69
doi: 10.1016/S0013-4686(97)00236-3
[11] Akrout H, Bousselmi L, Maximovitch S, et al. Adsorption of corrosion inhibitors (SA, HEDP) using EQCM: Chloride effect and synergic behavior [J]. J. Mater. Sci., 2012, 47: 8085
doi: 10.1007/s10853-012-6702-x
[12] Awad H S, Turgoose S. Role of complexes in inhibition of mild steel by zinc-1-hydroxyethylidene-1, 1-diphosphonic acid mixtures [J]. Br. Corros. J., 2002, 37: 147
doi: 10.1179/000705902225004347
[13] Kolodyńska D. Cu(II), Zn(II), Ni(II), and Cd(II) complexes with HEDP removal from industrial effluents on different ion exchangers [J]. Ind. Eng. Chem. Res., 2010, 49: 2388
doi: 10.1021/ie9014414
[14] Wang Z L, Yang Y X, Zhang J B, et al. A study on electroplating of zinc nickel alloy with HEDP plating bath [J]. Russ. J. Electrochem., 2006, 42: 22
[15] Lacour S, Daeluchat V, Bollinger J C, et al. Influence of carbonate and calcium ions on the phosphonate complexation with Cu, Zn, Cd and Ni in fresh waters: An evaluation of thermodynamic constants and a chemical model [J]. Environ. Technol., 1999, 20: 249
doi: 10.1080/09593332008616815
[16] Pu S M, Chen M Y, Chen Y Q, et al. Zirconium ions integrated in 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a metalorganic-like complex coating on biodegradable magnesium for corrosion control [J]. Corros. Sci., 2018, 144: 277
doi: 10.1016/j.corsci.2018.09.003
[17] Sekine I, Hirakawa Y. Effect of 1-hydroxyethylidene-1, 1-diphosphonic acid on the corrosion of SS 41 steel in 0.3% sodium chloride solution [J]. Corrosion, 1986, 42: 272
doi: 10.5006/1.3584904
[18] Mohammedi D, Benmoussa A, Fiaud C, et al. Synergistic or additive corrosion inhibition of mild steel by a mixture of HEDP and metasilicate at pH 7 and 11 [J]. Mater. Corros., 2004, 55: 837
doi: 10.1002/(ISSN)1521-4176
[19] Awad H S. The effect of zinc-to-HEDP molar ratio on the effectiveness of zinc-1, hydroxyethylidene-1, 1 diphosphonic acid in inhibiting corrosion of carbon steel in neutral solutions [J]. Anti-Corros. Method Mater., 2005, 52: 22
doi: 10.1108/00035590510574880
[20] Wei J. Research on improving the corrosion resistance of hot-rolled rebar by chemical cooling process [D]. Shenyang: Institute of Metal Research, Chinese Academy of Science, 2009
魏 洁. 化学冷却工艺提高热轧螺纹钢耐蚀性的研究 [D]. 沈阳: 中国科学院金属研究所, 2009
[21] Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39: 25
doi: 10.1179/147842204225016859
[22] Kimura M, Kihira H, Ohta N, et al. Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance [J]. Corros. Sci., 2005, 47: 2499
doi: 10.1016/j.corsci.2005.04.005
[23] Olefjord I, Brox B, Jelvestam U. Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA [J]. J. Electrochem. Soc., 1985, 132: 2854
doi: 10.1149/1.2113683
[24] Wang Y, Jiang S L, Zheng Y G, et al. Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions [J]. Corros. Sci., 2012, 63: 159
doi: 10.1016/j.corsci.2012.05.025
[25] Lu Y F. Corrosion behavior of 3Ni0.3Cu low alloy steel in simulated deep groundwater environments [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2015
卢云飞. 3Ni0.3Cu低合金钢在深层地下水模拟溶液中的腐蚀行为 [D]. 沈阳: 中国科学院金属研究所, 2015
[26] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. New York: Plenum Press, 1980: 316
[27] MacDonald D D, Urquidi‐MacDonald M. Theory of steady‐state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
doi: 10.1149/1.2086949
[28] Cao F T, Wei J, Dong J H, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in saturated Ca(OH)2 solution with 1 mol·L-1 NaCl [J]. Corros. Eng. Sci. Technol., 2018, 53: 283
doi: 10.1080/1478422X.2018.1459063
[29] Cui X F, Li Q F, Li Y, et al. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy [J]. Appl. Surf. Sci., 2008, 255: 2098
doi: 10.1016/j.apsusc.2008.06.199
[30] Oku M, Hirokawa K. X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compounds [J]. J. Electron. Spectrosc. Relat. Phenom., 1976, 8: 475
doi: 10.1016/0368-2048(76)80034-5
[31] Tan B J, Sherwood P M A, Klabunde K J. XPS studies of gold films prepared from nonaqueous gold colloids [J]. Langmuir, 1990, 6: 106
[32] Allen G C, Hallam K R. Characterisation of the spinels MxCo1-xFe2O4 (M=Mn, Fe or Ni) using X-ray photoelectron spectroscopy [J]. Appl. Surf. Sci., 1996, 93: 25
doi: 10.1016/0169-4332(95)00186-7
[33] Marcus P, Grimal J M. The anodic dissolution and passivation of Ni-Cr-Fe alloys studied by ESCA [J]. Corros. Sci., 1992, 33: 805
doi: 10.1016/0010-938X(92)90113-H
[34] Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution [J]. Biomaterials, 1991, 12: 767
doi: 10.1016/0142-9612(91)90028-9
[35] Pearson R G. Acids and bases [J]. Science, 1966, 151: 172
doi: 10.1126/science.151.3707.172
[36] Dong J H, Song G L, Lin H C, et al. The adsoption of thiourea and its derivatives on iron electrode in acidic solution [J]. Acta Phys. Chim. Sin., 1996, 12: 34
董俊华, 宋光玲, 林海潮等. 酸性介质中硫脲及衍生物在纯铁上的吸附作用 [J]. 物理化学学报, 1996, 12: 34
doi: 10.3866/PKU.WHXB19960108
[1] LI Yuxing, LIU Xinghao, WANG Cailin, HU Qihui, WANG Jinghan, MA Hongtao, ZHANG Nan. Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities[J]. 金属学报, 2021, 57(3): 283-294.
[2] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[3] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[4] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[5] WU Yucheng, GAO Zhiqiang, XU Guangqing, LIU Jiaqin, XUAN Haicheng, LIU Youhao, YI Xiaofei, CHEN Jingwu, HAN Peide. Current Status and Challenges in Corrosion and Protection Strategies for Sintered NdFeB Magnets[J]. 金属学报, 2021, 57(2): 171-181.
[6] WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. 金属学报, 2021, 57(1): 1-15.
[7] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
[8] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[9] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[10] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[11] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[12] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[13] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[14] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[15] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
No Suggested Reading articles found!