|
|
Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy |
YAO Xiaofei( ), WEI Jingpeng, LV Yukun, LI Tianye |
School of Materials Science and Chemical Engineering, Xi′an Technologcal University, Xi′an 710021, China |
|
Cite this article:
YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy. Acta Metall Sin, 2020, 56(5): 769-775.
|
Abstract Mo in the form of solid solution atom or compound phase is distributed in CoCrFeMnNi high entropy alloy, which has the effect of solution strengthening or second phase strengthening. The method of annealing was used to heat treated (CoCrFeMnNi)97.02Mo2.98 high entropy alloy to investigate effects of σ phase on mechanical properties of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy. SEM, EDS and XRD were used to analyze effects of annealing temperature on precipitation σ phase (CrMo phase) in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy. The mechanical properties were tested by microhardness and tensile test, and the influencing mechanism of σ phase on the mechanical properties was investigated. The results show that with increase of the annealing temperature, the quantity of precipitation σ phase increases in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy, and the σ phase is first precipitated at the grain boundary, and is after precipitated in intracrystalline. The morphologies of σ phase at the grain boundary are changed gradually from tiny strips of discontinuous distribution to thick strip of continuous distribution. With the annealing temperature increases further, the morphologies of σ phase are changed from strip of continuous distribution to granular of continuous distribution. The precipitation σ phases in (CoCrFeMnNi)97.02Mo2.98 high entropy alloy by annealing have the effect of second phase reinforcement, with the annealing temperature increase, the numbers of precipitation σ phase increase, and the hardness and strength both increase, which is obviously at temperature higher than 900 ℃. The σ phase precipitation in intracrystalline, and its refinement, can improve the strength and plasticity of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy synchronously.
|
Received: 29 September 2019
|
|
Fund: National Natural Science Foundation of China(51901167);Shaanxi Provincial Education Department(2018JK0396);Natural Science Basic Research Program of Shaanxi(2017JM5057) |
1 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci. Eng., 2004, A375: 213
|
2 |
Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
doi: 10.1007/s11837-014-1066-0
|
3 |
Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys [J]. J. Alloys Compd., 2015, 652: 266
doi: 10.1016/j.jallcom.2015.08.224
|
4 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
5 |
Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
|
6 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
7 |
Coury F G, Butler T, Chaput K, et al. Phase equilibria, mechanical properties and design of quaternary refractory high entropy alloys [J]. Mater. Des., 2018, 155: 244
doi: 10.1016/j.matdes.2018.06.003
|
8 |
Daoud H M, Manzoni A M, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) [J]. JOM, 2015, 67: 2271
doi: 10.1007/s11837-015-1484-7
|
9 |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
|
10 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
11 |
Shahmir H, He J Y, Lu Z P, et al. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2016, A676: 294
|
12 |
Lu Z P, Lei Z F, Huang H D, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
|
|
吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J], 金属学报, 2018, 54: 1553
|
13 |
Rogal L, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy [J]. J. Alloys Compd., 2017, 708: 344
|
14 |
Rogal L, Kalita D, Litynska-Dobrzynska L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3 [J]. Intermetallics, 2017, 86: 104
|
15 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
16 |
Chen S T, Tang WY, Kuo Y F, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys [J]. Mater. Sci. Eng., 2010, A527: 5818
|
17 |
Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys [J]. Mater. Sci. Eng., 2010, A527: 6975
|
18 |
Dong Y, Lu Y P, Kong J R, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys [J]. J. Alloys Compd., 2013, 573: 96
|
19 |
Stepanov N D, Shaysultanov D G, Ozerov M S, et al. Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing [J]. Mater. Lett., 2016, 185: 1
|
20 |
Ming K S, Bi X F, Wang J. Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys [J]. Scr. Mater., 2017, 137: 88
|
21 |
Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
|
22 |
Yao X F, Wei J P, Li T Y. Effects of Mo element on microstructure and mechanical properties of CoCrFeMnNi high entropy alloys [J]. IOP Conf. Series: Mater. Sci. Eng., 2019, 585: 012019
|
23 |
Li T Y, Yao X F, Lv Y K, et al. Effect of heat treatment on microstructure and properties of CoCrFeMnNi-5%Mo high entropy alloy [J]. J. Xi'an Technol. Univ., 2019, 39: 80
|
|
李田野, 姚小飞, 吕煜坤等. 热处理对CoCrFeMnNi-5%Mo高熵合金组织及性能的影响 [J]. 西安工业大学学报, 2019, 39: 80
|
24 |
Firstov S A, Rogul' T G, Krapivka N A, et al. Structural features and solid-solution hardening of high-entropy CrMnFeCoNi alloy [J]. Powder Metall. Met. Ceram., 2016, 55: 225
|
25 |
Qin G, Chen R R, Zheng H T, et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition [J]. J. Mater Sci. Technol., 2019, 35: 578
|
26 |
Fu J X, Cao C M, Tong W, et al. Effect of thermomechanical processing on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 931
|
27 |
Thurston K V S, Gludovatz B, Yu Q, et al. Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy [J]. J. Alloys Compd., 2019, 794: 525
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|