Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (10): 1311-1318    DOI: 10.11900/0412.1961.2018.00553
Current Issue | Archive | Adv Search |
Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels
GUO Junli,WEN Guanghua(),FU Jiaojiao,TANG Ping,HOU Zibing,GU Shaopeng
SCollege of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Cite this article: 

GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels. Acta Metall Sin, 2019, 55(10): 1311-1318.

Download:  HTML  PDF(11438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Driven by the demand for the improving mechanical properties of steel products and the cost reduction in alloys, steels falling within the peritectic composition range are designed recently. However, notoriously cast surface defects such as cracks, deep oscillation mark formation and breakouts are found to occur frequently during continuous casting of steels, particularly at high casting speeds. This phenomenon is closely related to the shrinkage of phase transformation caused by the peritectic transformation. In order to understand the effects of cooling rate on the contraction of the peritectic transformation, the initial solidification processes of a peritectic steel (Fe-0.1C-0.21Si-1.2Mn, mass fraction, %) were observed using high-temperature confocal laser scanning microscopy under different cooling rates, and then variations in surface roughness were measured to reflect the degree of peritectic transformation contraction. The results show that the peritectic transformation occurs a massive transformation when the cooling rate exceeds the critical value. The massive transformation results in a sudden peritectic transformation contraction and surface roughness variations, which directly cause the occurrence of surface longitudinal cracks of slabs at high casting speeds. The contraction increases first and then decreases with the cooling rate increasing and the maximum surface roughness at the middle cooling rate (20 ℃/s) is about 2.8 times more extensive than that which occurs at the low cooling rate of 2.5 ℃/s. The phenomenon that the peritectic transformation contraction decreases under the high cooling rate may provide a new strategy to reduce cracks occurring in high speed casting.

Key words:  peritectic transformation      contraction      cooling rate      surface roughness      peritectic steel      continuous casting     
Received:  19 December 2018     
ZTFLH:  TF777  
Fund: National Natural Science Foundation of China(U1760103)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00553     OR     https://www.ams.org.cn/EN/Y2019/V55/I10/1311

Fig.1  Thermal scheme used in this experiment
Fig.2  The peritectic transformation of δ to γ under the cooling rate of 2.5 ℃/s
Fig.3  Image analyses of the δ/γ propagation of region A in Fig.2a
Fig.4  Two different modes of the peritectic transformation during solidification (G.B.—grain boundary)
Fig.5  Peritectic transformation temperatures under different cooling rates (T0-line is the thermodynamic equivalence of δ and γ)
Fig.6  Relationship between the cooling rate (dT/dt) and the undercooling (ΔT)
Fig.7  Surface morphologies under the cooling rates of 5 ℃/s (a) and 50 ℃/s (b)
Fig.8  Surface roughness (a) and the difference between maximum of roughness Ra(max) and minimum of roughness Ra(min) (φ) (b) under different cooling rates
Fig.9  Effect of the cooling rate and casting speed at the initial solidification in mold on the crack
[1] Saleem S, Vynnycky M, Fredriksson H. The influence of peritectic reaction/transformation on crack susceptibility in the continuous casting of steels [J]. Metall. Mater. Trans., 2017, 48B: 1625
[2] Ma N B, Lei Z S, Jin X L ,et al. Effect of temperature fluctuation on initial solidification process during peritectic steel continuous casting [J]. Acta Metall. Sin., 2008, 44: 1019
[2] (马宁博, 雷作胜, 金小礼等. 温度波动对包晶钢连铸初始凝固过程的影响 [J]. 金属学报, 2008, 44: 1019)
[3] Cai Z Z, Zhu M Y. Microsegregation of solute elements in solidifying mushy zone of steel and its effect on longitudinal surface cracks of continuous casting strand [J]. Acta Metall. Sin., 2009, 45: 949
[3] (蔡兆镇, 朱苗勇. 钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响 [J]. 金属学报, 2009, 45: 949)
[4] Gao Z, Zhang X Z, Yao S F. Mechanism of crack formation during continuous casting of peritectic steel slabs [J]. J. Iron Steel Res., 2009, 21(10): 8
[4] (高 仲, 张兴中, 姚书芳. 包晶钢铸坯裂纹形成机理的实验研究 [J]. 钢铁研究学报, 2009, 21(10): 8)
[5] Ridolfi M R, De Vito A, Ferro L. Effect of alloying elements on thermal contraction and crack susceptibility during in-mold solidification [J]. Metall. Mater. Trans., 2008, 39B: 581
[6] Emi T, Fredriksson H. High-speed continuous casting of peritectic carbon steels [J]. Mater. Sci. Eng., 2005, A413-414: 2
[7] Cai K K. Quality Control of Continuous Casting Strand [M]. Beijing: Metallurgical Industry Press, 2010: 163
[7] (蔡开科. 连铸坯质量控制 [M]. 北京: 冶金工业出版社, 2010: 163)
[8] Mondragón J J R, Trejo M H, de Jesús Castro Román M, et al. Description of the hypo-peritectic steel solidification under continuous cooling and crack susceptibility [J]. ISIJ Int., 2008, 48: 454
[9] Trejo M H, Lopez E A, Mondragon J J R ,et al. Effect of solidification path and contraction on the cracking susceptibility of carbon peritectic steels [J]. Met. Mater. Int., 2010, 16: 731
[10] Konishi J, Militzer M, Samarasekera I V, et al. Modeling the formation of longitudinal facial cracks during continuous casting of hypoperitectic steel [J]. Metall. Mater. Trans., 2002, 33B: 413
[11] Hu Z G, Ma C L, Liu L, et al. Region of peritectic reaction in thin slab casting process of CSP [J]. J. Iron Steel Res., 2006, 18(7): 10
[11] (胡志刚, 马春林, 刘 浏等. CSP薄板坯连铸包晶反应区域的研究 [J]. 钢铁研究学报, 2006, 18(7): 10)
[12] Yasuda H, Nagira T, Yoshiya M ,et al. Massive transformation from δ phase to γ phase in Fe-C alloys and strain induced in solidifying shell [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2012, 33: 012036
[13] Shibata H, Arai Y, Suzuki M, et al. Kinetics of peritectic reaction and transformation in Fe-C alloys [J]. Metall. Mater. Trans., 2000, 31B: 981
[14] Griesser S, Bernhard C, Dippenaar R. Effect of nucleation undercooling on the kinetics and mechanism of the peritectic phase transition in steel [J]. Acta Mater., 2014, 81: 111
[15] Guo J L, Wen G H, Pu D Z, et al. A novel approach for evaluating the contraction of hypo-peritectic steels during initial solidification by surface roughness [J]. Materials, 2018, 11: 571
[16] Pu D Z, Wen G H, Fu D C, et al. Study of the effect of carbon on the contraction of hypo-peritectic steels during initial solidification by surface roughness [J]. Metals, 2018, 8: 982
[17] Becker R. Effects of strain localization on surface roughening during sheet forming [J]. Acta Mater., 1998, 46: 1385
[18] Fu J X, Li X D, Hwang W S. Study of the coefficient of thermal expansion for steel Q235 [J]. Adv. Mater. Res., 2011, 194-196: 326
[19] Ueshima Y, Mizoguchi S, Matsumiya T ,et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification [J]. Metall. Trans., 1986, 17B: 845
[20] Nishimura T, Morishita K, Nagira T ,et al. Kinetics of the δ/γ interface in the massive-like transformation in Fe-0.3C-0.6Mn-0.3Si alloys [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 84: 012062
[21] Bhattacharyya S K, Perepezko J H, Massalski T B. Nucleation during continuous cooling—Application to massive transformations [J]. Acta Metall., 1974, 22: 879
[22] Wolf M M. Mold heat transfer and lubrication control—Two major functions of caster productivity and quality assurance [A]. Process Technology Conference Proceedings [C]. Nashville: Iron and Steel Society, 1995: 99
[23] Hanao M, Kawamoto M, Yamanaka A. Growth of solidified shell just below the meniscus in continuous casting mold [J]. ISIJ Int., 2009, 49: 365
[24] Kanazawa T, Hiraki S, Kawamoto M, et al. Behavior of lubrication and heat transfer in mold at high speed continuous casting [J]. Tetsu Hagáne, 1997, 83: 701
[24] (金沢 敬, 平城 正, 川本 正幸等. 高速連続鋳造時の鋳型内潤滑?伝熱挙動 [J]. 鉄と鋼, 1997, 83: 701)
[25] Cicutti C, Boeri R. Analysis of solute distribution during the solidification of low alloyed steels [J]. Steel Res. Int., 2006, 77: 194
[26] Edvardsson T, Fredriksson H, Svensson I. A study of the solidification process in low-carbon manganese steels [J]. Met. Sci., 1976, 10: 298
[27] Mizukami H, Suzuki T, Umeda T, et al. Initial stage of rapid solidification of 18-8 stainless steel [J]. Mater. Sci. Eng., 1993, A173: 361
[28] Dhindaw B K, Antonsson T, Fredriksson H, et al. Characterization of the peritectic reaction in medium-alloy steel through microsegregation and heat-of-transformation studies [J]. Metall. Mater. Trans., 2004, 35A: 2869
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[4] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[7] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[8] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[9] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[10] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[11] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[12] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[13] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[14] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[15] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
No Suggested Reading articles found!