Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (10): 1329-1337    DOI: 10.11900/0412.1961.2019.00020
Current Issue | Archive | Adv Search |
Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites
MA Kai1,2,ZHANG Xingxing1,WANG Dong1,WANG Quanzhao1,LIU Zhenyu1,XIAO Bolv1(),MA Zongyi1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites. Acta Metall Sin, 2019, 55(10): 1329-1337.

Download:  HTML  PDF(14159KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Particle reinforced aluminum matrix composites (PRAMCs) have the advantages of high specific strength and high specific modulus, and are important engineering materials for aerospace field. However, due to the huge difference in the mechanical properties between the reinforcements and the aluminum matrixes, the plastic forming of PRAMCs is quite difficult, which restricts their wide engineering applications. In order to improve the quality of plastic processing, it is necessary to optimize deformation parameters of PRAMCs. In this study, the hot deformation parameters of a 15%SiC/2009Al composite fabricated by powder metallurgy were optimized using a simulation method. Firstly, true stress-strain curves of the SiC/2009Al composite were obtained through hot compression tests, and then the strain rate sensitivity index (m) map at the ultimate strain was established. Under the deformation parameters corresponding to various m values, the finite element simulation of the hot compression process was carried out. The flow stress, strain and damage coefficient distribution of the hot-compressed samples were analyzed. The results show that it is reliable to use the m value as the basis for optimizing the processing parameters, which were further verified by the microstructural observations. The deformation temperature and strain rate corresponding to the optimum parameters of the composite were determined to be 500 ℃ and 0.01 s-1, respectively.

Key words:  aluminum matrix composite      hot deformation      constitutive equation      finite element simulation     
Received:  24 January 2019     
ZTFLH:  TG319  
Fund: Supported by National Key Research and Development Program of China(2017YFB0703104);National Natural Science Foundation of China(51871214);National Natural Science Foundation of China(U1508216)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00020     OR     https://www.ams.org.cn/EN/Y2019/V55/I10/1329

Fig.1  Geometric model of finite element simulation
Fig.2  True stress-true strain curves of 15%SiC (volume fraciton)/2009Al composite at 0.1 s-1 (a) and 400 ℃ (b)
Fig.3  Map of strain rate sensitivity (m) for 15%SiC/2009Al composite
Fig.4  Variation of threshold stress (σth) with temperature for 15%SiC/2009Al composite
Fig.5  Effective stress distributions (a~c), maximum principal stress distributions (d~f) and effective strain distributions (g~i) under different deformation parameters for 15%SiC/2009Al composite
Fig.6  Variations of effective strain with specimen locations from the center of the upper end to the center of the lower end (a) and from the center of the sample to the bulge (b) under different deformation parameters for 15%SiC/2009Al composite
Fig.7  Distributions of damage coefficient (D) under the deformation parameters of 500 ℃, 0.01 s-1 (a), 500 ℃, 0.001 s-1 (b), 400 ℃, 0.01 s-1 (c) for 15%SiC/2009Al composite and curves of damage coefficient vs coordinate from the center to the bulge of the sample (d)
Fig.8  Distributions of SiC at variant locations with different m for 15%SiC/2009Al composite
Fig.9  Simulation results of damage values for 15%SiC/2009Al composite at 500 ℃, 0.01 s-1 and the true strain (ε) of 1.0
[1] Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. Int. Mater. Rev., 1994, 39(1): 1
[2] Tjong S C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties [J]. Adv. Eng. Mater., 2007, 9: 639
[3] Ramnath B V, Elanchezhian C, Annamalai R M ,et al. Aluminium metal matrix composites—A review [J]. Rev. Adv. Mater. Sci., 2014, 38: 55
[4] Tham L M, Gupta M, Cheng L. Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites [J]. Mater. Sci. Eng., 2002, A326: 355
[5] Li H Z, Wang H J, Zeng M ,et al. Forming behavior and workability of 6061/B4CP composite during hot deformation [J]. Compos. Sci. Technol., 2011, 71: 925
[6] Liu Z Y, Wang Q Z, Xiao B L, et al. Effects of double extrusion on the microstructure and tensile property of the PM processed SiCp/2009Al composites [J]. Acta Metall. Sin., 2010, 46: 1121
[6] (刘振宇, 王全兆, 肖伯律等. 二次挤压对SiCp/2009Al复合材料微观结构和力学性能的影响 [J]. 金属学报, 2010, 46: 1121)
[7] Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
[7] (肖伯律, 黄治冶, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59)
[8] Kim H Y, Hong S H. High temperature deformation behavior of 20vol.% SiCw2024Al metal matrix composite [J]. Scr. Metall. Mater., 1994, 30: 297
[9] Huang H Y, Fan G L, Tan Z Q ,et al. Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy [J]. Mater. Sci. Eng., 2017, A699: 55
[10] Mabuchi M, Higashi K, Inoue K ,et al. Experimental investigation of superplastic behavior in a 20vol% Si3N4p5052 aluminum composite [J]. Scr. Mater., 1992, 26: 1839
[11] Huang Z Y, Zhang X X, Xiao B, et al. Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite [J]. J. Alloys Compd., 2017, 722: 145
[12] Shao J C, Xiao B L, Wang Q Z ,et al. Constitutive flow behavior and hot workability of powder metallurgy processed 20vol.%SiCP/2024Al composite [J]. Mater. Sci. Eng., 2010, A527: 7865
[13] Mokdad F, Chen D L, Liu Z Y ,et al. Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite [J]. Mater. Sci. Eng., 2017, A702: 425
[14] Kai X Z, Zhao Y T, Wang A D ,et al. Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite [J]. Compos. Sci. Technol., 2015, 116: 1
[15] Kim W J. The size effect of SiC particulates on activation energy for superplastic flow in a 2124 Al metal matrix composite [J]. Scr. Mater., 1999, 41: 1131
[16] Shi C J, Chen X G. Evolution of activation energies for hot deformation of 7150 aluminum alloys with various Zr and V additions [J]. Mater. Sci. Eng., 2016, A650: 197
[17] Huang Z Y, Zhang X X, Yang C, et al. Abnormal deformation behavior and particle distribution during hot compression of fine-grained 14vol% SiCp/2014Al composite [J]. J. Alloys Compd., 2018, 743: 87
[18] Zhang Z J, Dai G Z, Wu S N ,et al. Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D [J]. Mater. Sci. Eng., 2009, A499: 49
[19] Sornin D, Karch A, Nunes D. Finite element method simulation of the hot extrusion of a powder metallurgy stainless steel grade [J]. Int. J. Mater. Forming, 2015, 8: 145
[20] Chen J F, Yan M F, Wang X R. 3D FEM simulation of hot extrusion process of AerMet100 steel [J]. Trans. Mater. Heat Treat., 2007, 28(S1): 367
[20] (陈俊锋, 闫牧夫, 汪向荣. AerMet100钢热挤压变形过程数值模拟 [J]. 材料热处理学报, 2007, 28(S1): 367)
[21] Zhou L, Huang Z Y, Wang C Z ,et al. Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite [J]. Mech. Mater., 2016, 93: 32
[22] Zhou L, Wang C Z, Zhang X X ,et al. Finite element simulation of hot rolling process for SiCp/Al composites [J]. Acta Metall. Sin., 2015, 51: 889
[22] (周 丽, 王唱舟, 张星星等. SiCp/Al复合材料热轧过程的有限元模拟 [J]. 金属学报, 2015, 51: 889)
[23] Liu Y, Shao J C, Ding L ,et al. Finite element simulation and analysis of 12 vol%SiCP/2024Al matrix composites for hot extrusion process [J]. Acta. Mater. Compos. Sin., 2009, 26(5): 167
[23] (刘 越, 邵军超, 丁 莉等. 12vol%SiCP/2024Al基复合材料热挤压过程有限元模拟与分析 [J]. 复合材料学报, 2009, 26(5): 167)
[24] Zhang J F, Zhang X X, Wang Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34: 627
[25] McQueen H J, Blum W. Dynamic recovery: Sufficient mechanism in the hot deformation of Al (<99.99) [J]. Mater. Sci. Eng., 2000, A290: 95
[26] Sun Y L, Xie J P, Hao S M ,et al. Dynamic recrystallization model of 30%SiCp/Al composite [J]. J. Alloys Compd., 2015, 649: 865
[27] Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204
[28] Kim W J, Hong S H. High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy [J]. J. Mater. Sci., 2000, 35: 2779
[29] Du N N, Bower A F, Krajewski P E, et al. The influence of a threshold stress for grain boundary sliding on constitutive response of polycrystalline Al during high temperature deformation [J]. Mater. Sci. Eng., 2008, A494: 86
[30] Lagneborg R, Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys [J]. Met. Sci., 1976, 10: 20
[31] Kaibyshev R, Kazyhanov V, Musin F. Hot plastic deformation of aluminium alloy 2009-15%SiCw composite [J]. Mater. Sci. Technol., 2002, 18: 777
[32] Mishra R S, Bieler T R, Mukherjee A K. Mechanism of high strain rate superplasticity in aluminium alloy composites [J]. Acta Mater., 1997, 45: 561
[33] Wierzbicki T, Bao Y B, Lee Y W, et al. Calibration and evaluation of seven fracture models [J]. Int. J. Mech. Sci., 2005, 47: 719
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[3] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[4] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[5] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[6] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[7] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[8] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[9] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[11] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[12] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[14] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[15] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
No Suggested Reading articles found!