Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview
Hao CHEN, Congyu ZHANG(), Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG
The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article:
Hao CHEN, Congyu ZHANG, Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG. Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview. Acta Metall Sin, 2018, 54(2): 217-227.
Phase transformation is one of the most effective methods to tailor microstructure of steels. In order to develop high performance steels, microstructure has to be precisely tuned, which requires a deep understanding of phase transformation. The austenite to ferrite transformation in steels has been of great interest for several decades due to its considerable importance in the processing of modern high performance steels, and it has been investigated from various aspects. Mechanism of interface migration and alloying elements partitioning during the austenite to ferrite transformation was regarded as one of the most significant and challenging topics in the field. This paper briefly summarized the recent progress in the understanding of this topic from both theoretical and experimental perspectives, and would also provide discussions and outlook of the unresolved issues.
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0300104) and National Natural Science Foundation of China (Nos.51501099 and 51471094)
Fig.1 Fe-C-M ternary alloy under paraequilibrium (PE) condition(a) isothermal section(b) alloying element profile at the α/γ interface(c) C profile at the α/γ interface. Here, XC is the mole fraction of C and YM is the site fraction of alloying element (YM=XM/(1- XC), XM is the mole fraction of alloying element)
Fig.2 Fe-C-M ternary alloy under local equilibrium (LE) condition(a) isothermal section in partition local equilib- rium (PLE) mode(b) alloying element profile at the α/γ interface in PLE mode(c) C profile at the α/γ interface in PLE mode(d) isothermal section in negligible partition local equilibrium (NPLE) mode(e) alloying element profile at the α/γ interface in NPLE mode(f) C profile at the α/γ interface in NPLE mode
Fig.3 Deviations of Fs and As from T0 upon cooling and heating in the Fe-Ni, Fe-Mn and Fe-Co alloys as a function of the solute concentration[74] (Fs—starting temperature of austenite-ferrite transformation, As—starting temperature of ferrite-austenite transformation, T0—temperature at which the free energies of new phase and parent phase are equal)
Fig.4 Derived interface mobility (Mint) as a function of temperature[74]
Fig.5 Dilation as a function of temperature during cyclic experiments (a) and α/γ interface position as a function of temperature simulated under both local equilibrium and paraequilibrium conditions between 885 and 860 ℃ in Fe-0.17Mn-0.023C (mass fraction, %) alloy (b)[101]
Fig.6 Dilations as a function of temperature during the γ-α cyclic phase transformations with 6 temperature cycles between 842 and 785 ℃ in a Fe-0.49Mn-0.1C (mass fraction, %) alloy (a) and simulated residual Mn spikes in austenite after cyclic phase transformations with 1, 2 and 6 temperature cycles (b)[104]
[1]
Christian J W.The theory of transformations in metals and alloys [M]. Oxford: Pergamon Press, 1975: 1
[2]
Offerman S E, Van Dijk N H, Sietsma J, et al. Grain nucleation and growth during phase transformations[J]. Science, 2002, 298: 1003
[3]
Van Dijk N H, Offerman S E, Sietsma J, et al. Barrier-free heterogeneous grain nucleation in polycrystalline materials: The austenite to ferrite phase transformation in steel[J]. Acta Mater., 2007, 55: 4489
[4]
Liu F, Sommer F, Bos C, et al.Analysis of solid state phase transformation kinetics: Models and recipes[J]. Int. Mater. Rev., 2007, 52: 193
[5]
Purdy G, ?gren J, Borgenstam A, et al.ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces[J]. Metall. Mater. Trans., 2011, 42A: 3703
[6]
Gouné M, Danoix F, ?gren J, et al.Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels[J]. Mater. Sci. Eng., 2015, R92: 1
[7]
Chen H, Van Der Zwaag S. An overview of the cyclic partial austenite-ferrite transformation concept and its potential[J]. Metall. Mater. Trans., 2017, 48A: 2720
[8]
Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
[9]
Krielaart G P, Sietsma J, Van Der Zwaag S. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions[J]. Mater. Sci. Eng., 1997, A237: 216
[10]
Liu Y C, Sommer F, Mittemeijer E J.Phase Transformations in Steels[M]. Vol.2, Amsterdam: Elsevier, 2012: 311
[11]
Kempen A T W, Sommer F, Mittemeijer E J. The kinetics of the austenite-ferrite phase transformation of Fe-Mn: Differential thermal analysis during cooling[J]. Acta Mater., 2002, 50: 3545
[12]
Liu Y C, Sommer F, Mittemeijer E J.Kinetics of the abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys[J]. Acta Mater., 2004, 52: 2549
Hillert M.Introduction to paraequilibrium [R]. Internal Report, Swedish Institute of Metals Research, Stockholm, 1953
[15]
Bhadeshia H K D H. Some difficulties in the theory of diffusion-controlled growth in substitutionally alloyed steels[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 396
[16]
Hillert M, ?gren J.On the definitions of paraequilibrium and orthoequilibrium[J]. Scr. Mater., 2004, 50: 697
[17]
Speer J G, Matlock D K, DeCooman B C, et al. Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. ?gren, Scripta Materialia, 50, 697-9 (2004)[J]. Scr. Mater., 2005, 52: 83
[18]
Hillert M, ?gren J.Reply to comments on "On the definition of paraequilibrium and orthoequilibrium"[J]. Scr. Mater., 2005, 52: 87
[19]
Kirkaldy J.Diffusion in multicomponent metallic systems: I. Phenomenological theory for substitutional solid solution alloys[J]. Can. J. Phys., 1958, 36: 899
[20]
Kirkaldy J S.Diffusion in multicomponent metallic systems: II. Solutions for two-phase systems with applications to transformations in steel[J]. Can. J. Phys., 1958, 36: 907
[21]
Kirkaldy J S.Diffusion in multicomponent metallic systems: III. The motion of planar phase interfaces[J]. Can. J. Phys., 1958, 36: 917
[22]
Kirkaldy J.Diffusion in multicomponent metallic systems: IV. A general theorem for construction of multicomponent solutions from solutions of the binary diffusion equation[J]. Can. J. Phys., 1959, 37: 30
[23]
Coates D E.Diffusion-controlled precipitate growth in ternary systems I[J]. Metall. Trans., 1972, 3: 1203
[24]
Coates D E.Diffusional growth limitation and hardenability[J]. Metall. Trans., 1973, 4: 2313
[25]
Coates D E.Diffusion controlled precipitate growth in ternary systems: II[J]. Metall. Trans., 1973, 4: 1077
[26]
Coates D E.Precipitate growth kinetics for Fe-C-X alloys[J]. Metall. Mater. Trans., 1973, 4B: 395
[27]
Zhang C Y, Yang Z G, Enomoto M, et al.Prediction of Ar3 during very slow cooling in low alloy steels[J]. ISIJ Int., 2016, 56: 678
[28]
Van Der Ven A, Delaey L. Models for precipitate growth during the γ→α+γ transformation in Fe-C and Fe-C-M alloys[J]. Prog. Mater. Sci., 1996, 40: 181
[29]
Sietsma J, Van Der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
[30]
Liu Z Y, Yang Z G, Li Z D, et al.Simulation of ledgewise growth kinetics of proeutectiod ferrite under interfacial reaction-diffusion mixed control model[J]. Acta Metall. Sin., 2010, 46: 390(刘志远, 杨志刚, 李昭东等. 界面反应--扩散混合控制模型下先共析铁素体生长动力学的模拟[J]. 金属学报, 2010, 46: 390)
[31]
Lücke K, Detert K.A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metall., 1957, 5: 628
Lücke K, Stüwe H P.On the theory of impurity controlled grain boundary motion[J]. Acta Metall., 1971, 19: 1087
[34]
Purdy G R, Brechet Y J M. A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels[J]. Acta Metall., 1995, 43: 3763
[35]
Enomoto M.Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater., 1999, 47: 3533
[36]
Hillert M, Sundman B.A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys[J]. Acta Metall., 1976, 24: 731
[37]
Zurob H S, Panahi D, Hutchinson C R, et al.Self-consistent model for planar ferrite growth in Fe-C-X alloys[J]. Metall. Mater. Trans., 2013, 44A: 3456
[38]
Odqvist J, Hillert M, ?gren J.Effect of alloying elements on the γ to α transformation in steel. I[J]. Acta Mater., 2002, 50: 3213
[39]
Chen H, Van Der Zwaag S. A general mixed-mode model for the austenite-to-ferrite transformation kinetics in Fe-C-M alloys[J]. Acta Mater., 2014, 72: 1
[40]
Chen H, Zhu K Y, Zhao L, et al.Analysis of transformation stasis during the isothermal bainitic ferrite formation in Fe-C-Mn and Fe-C-Mn-Si alloys[J]. Acta Mater., 2013, 61: 5458
[41]
Tanaka T, Aaronson H I, Enomoto M.Growth kinetics of grain boundary allotriomorphs of proeutectoid ferrite in Fe-C-Mn-X2 alloys[J]. Metall. Mater. Trans., 1995, 26A: 561
[42]
Aaronson H I, Reynolds W T Jr, Purdy G R. Coupled-solute drag effects on ferrite formation in Fe-C-X systems[J]. Metall. Mater. Trans., 2004, 35A: 1187
[43]
Guo H, Enomoto M.Effects of substitutional solute accumulation at α/γ boundaries on the growth of ferrite in low carbon steels[J]. Metall. Mater. Trans., 2007, 38A: 1152
[44]
Qiu C, Zurob H S, Hutchinson C R.The coupled solute drag effect during ferrite growth in Fe-C-Mn-Si alloys using controlled decarburization[J]. Acta Mater., 2015, 100: 333
[45]
Zhang C Y, Chen H, Zhu K Y, et al.Effect of Mo addition on the transformation stasis phenomenon during the isothermal formation of bainitic ferrite[J]. Metall. Mater. Trans., 2016, 47A: 5670
[46]
Rowlinson J S.Translation of J.D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”[J]. J. Stat. Phys, 1979, 20: 197
[47]
Van Der Waals J D. Thermodynamische Theorie der Kapillarit?t unter voraussetzung stetiger Dichte?nderung [J]. Z. Phys. Chem., 1894, 13: 657
[48]
Boettinger W J, Warren J A, Beckermann C, et al.Phase-field simulation of solidification[J]. Annu. Rev. Mater. Res., 2002, 32: 163
[49]
Militzer M.Computer simulation of microstructure evolution in low carbon sheet steels[J]. ISIJ Int., 2007, 47: 1
[50]
Chen L Q.Phase-field models for microstructure evolution[J]. Annu. Rev. Mater. Res., 2002, 32: 113
[51]
Allen S M, Cahn J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metall., 1979, 27: 1085
Steinbach I, Pezzolla F, Nestler B, et al.A phase field concept for multiphase systems[J]. Phys: Nonlin. Phenom., 1996, 94D: 135
[54]
Steinbach I, Pezzolla F.A generalized field method for multiphase transformations using interface fields[J]. Phys: Nonlin. Phenom., 1999, 134D: 385
[55]
Nakajima K, Apel M, Steinbach I.The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study[J]. Acta Mater., 2006, 54: 3665
[56]
Militzer M, Mecozzi M G, Sietsma J, et al.Three-dimensional phase field modelling of the austenite-to-ferrite transformation[J]. Acta Mater., 2006, 54: 3961
[57]
Steinbach I, Apel M.The influence of lattice strain on pearlite formation in Fe-C[J]. Acta Mater., 2007, 55: 4817
[58]
Mecozzi M G, Sietsma J, Van Der Zwaag S. Phase field modelling of the interfacial condition at the moving interphase during the γ→α transformation in C-Mn steels[J]. Comput. Mater. Sci., 2005, 34: 290
[59]
Militzer M.Phase field modeling of microstructure evolution in steels[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 106
[60]
Loginova I, ?gren J, Amberg G.On the formation of Widmanst?tten ferrite in binary Fe-C - Phase-field approach[J]. Acta Mater., 2004, 52: 4055
[61]
Loginova I, Odqvist J, Amberg G, et al.The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys[J]. Acta Mater., 2003, 51: 1327
[62]
Zhang J, Zheng C W, Li D Z.Modeling of isothermal austenite to ferrite transformation in a Fe-C alloy by phase-field method[J]. Acta Metall. Sin., 2016, 52: 1449(张军, 郑成武, 李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程[J]. 金属学报, 2016, 52: 1449)
[63]
Yeon D H, Cha P R, Yoon J K.A phase field study for ferrite-austenite transitions under para-equilibrium[J]. Scr. Mater., 2001, 45: 661
[64]
Mecozzi M G, Sietsma J, Van Der Zwaag S, et al. Analysis of the γ→α transformation in a C-Mn steel by phase-field modeling[J]. Metall. Mater. Trans., 2005, 36A: 2327
[65]
Chen H, Zhu B Q, Militzer M.Phase field modeling of cyclic austenite-ferrite transformations in Fe-C-Mn alloys[J]. Metall. Mater. Trans., 2016, 47A: 3873
[66]
Zhu B Q, Chen H, Militzer M.Phase-field modeling of cyclic phase transformations in low-carbon steels[J]. Comput. Mater. Sci., 2015, 108: 333
[67]
Zhang J, Chen W X, Zheng C W, et al.Phase-field modeling of austenite-to-ferrite transformation in Fe-C-Mn ternary alloys[J]. Acta Metall. Sin., 2017, 53: 760(张军, 陈文雄, 郑成武等. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53: 760)
[68]
Bradley J, Rigsbee J, Aaronson H I.Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C alloys[J]. Metall. Trans., 1977, 8A: 323
[69]
Krielaart G P, Van Der Zwaag S. Simulations of pro-eutectoid ferrite formation using a mixed control growth model[J]. Mater. Sci. Eng., 1998, A246: 104
[70]
Liu Y C, Sommer F, Mittemeijer E J.The austenite-ferrite transformation of ultralow-carbon Fe-C alloy; transition from diffusion-to interface-controlled growth[J]. Acta Mater., 2006, 54: 3383
[71]
Hamada J, Enomoto M, Fujishiro T, et al.In-situ observation of the growth of massive ferrite in very low-carbon Fe-Mn and Ni alloys[J]. Metall. Mater. Trans., 2014, 45A: 3781
[72]
Aaronson H I, Vasudevan V K.General discussion session of the symposium on “The mechanisms of the massive transformation”[J]. Metall. Mater. Trans., 2002, 33A: 2445
[73]
Borgenstam A, Hillert M.Massive transformation in the Fe-Ni system[J]. Acta Mater., 2000, 48: 2765
[74]
Zhu J N, Luo H W, Yang Z G, et al.Determination of the intrinsic α/γ interface mobility during massive transformations in interstitial free Fe-X alloys[J]. Acta Mater., 2017, 133: 258
[75]
Odqvist J.On the transition to massive growth during the γ→α transformation in Fe-Ni alloys[J]. Scr. Mater., 2005, 52: 193
[76]
Enomoto M, White C L, Aaronson H I.Evaluation of the effects of segregation on austenite grain boundary energy in Fe-C-X alloys. Metall. Trans., 1988, 19A: 1807
[77]
Speich G, Szirmae A, Richards M.Formation of austenite from ferrite and ferrite-carbide aggregates[J]. Trans. metall. Soc. AIME, 1969, 245: 1063
[78]
Krielaart G P, Van Der Zwaag S. Kinetics of γ→α phase transformation in Fe-Mn alloys containing low manganese[J]. Mater. Sci. Technol., 1998, 14: 10
[79]
Wits J J, Kop T A, Van Leeuwen Y, et al.A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys[J]. Mater. Sci. Eng., 2000, A283: 234
[80]
Hillert M, H?glund L.Mobility of α/γ phase interfaces in Fe alloys[J]. Scr. Mater., 2006, 54: 1259
[81]
Liu Y C, Sommer F, Mittemeijer E J.Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys[J]. Acta Mater., 2003, 51: 507
[82]
Liu Y C, Sommer F, Mittemeijer E J.Abnormal austenite-ferrite transformation behaviour of pure iron[J]. Philos. Mag., 2004, 84: 1853
[83]
Liu Z Q, Miyamoto G, Yang Z G, et al.Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys[J]. Acta Mater., 2013, 61: 3120
[84]
Xia Y, Miyamoto G, Yang Z G, et al.Effects of Mo on carbon enrichment during proeutectoid ferrite transformation in hypoeutectoid Fe-C-Mn alloys[J]. Metall. Mater. Trans., 2015, 46A: 2347
[85]
Liu Z Y, Yang Z G, Li Z D, et al.PLE/NPLE transition temperature of γ→α transformation of Fe-C-X alloy under hot deformation condition[J]. Acta Metall. Sin., 2008, 44: 703(刘志远, 杨志刚, 李昭东等. 热变形条件下Fe-C-X合金钢γ→α 相变的PLE/NPLE转变温度[J]. 金属学报, 2008, 44: 703)
[86]
Kubo Y, Hamada K, Urano A.Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis[J]. Ultramicroscopy, 2013, 135: 64
[87]
Oi K, Lux C, Purdy G R.A study of the influence of Mn and Ni on the kinetics of the proeutectoid ferrite reaction in steels[J]. Acta Mater., 2000, 48: 2147
[88]
Hutchinson C R, Fuchsmann A, Brechet Y.The diffusional formation of ferrite from austenite in Fe-C-Ni alloys[J]. Metall. Mater. Trans., 2004, 35A: 1211
[89]
Guo H, Purdy G R, Enomoto M, et al.Kinetic transitions and substititional solute (Mn) fields associated with later stages of ferrite growth in Fe-C-Mn-Si[J]. Metall. Mater. Trans., 2006, 37A: 1721
[90]
Zhang G H, Heo Y U, Song E J, et al.Kinetic transition during the growth of proeutectoid ferrite in Fe-C-Mn-Si quaternary steel[J]. Met. Mater. Int., 2013, 19: 153
[91]
Capdevila C, Cornide J, Tanaka K, et al.Kinetic transition during ferrite growth in Fe-C-Mn medium carbon steel[J]. Metall. Mater. Trans., 2011, 42A: 3719
[92]
Danoix F, Sauvage X, Huin D, et al.A direct evidence of solute interactions with a moving ferrite/austenite interface in a model Fe-C-Mn alloy[J]. Scr. Mater., 2016, 121: 61
[93]
Van Landeghem H P, Langelier B, Gault B, et al. Investigation of solute/interphase interaction during ferrite growth[J]. Acta Mater., 2017, 124: 536
[94]
Hutchinson C R, Fuchsmann A, Zurob H S, et al.A novel experimental approach to identifying kinetic transitions in solid state phase transformations[J]. Scr. Mater., 2004, 50: 285
[95]
Zurob H S, Hutchinson C R, Béché A, et al.A transition from local equilibrium to paraequilibrium kinetics for ferrite growth in Fe-C-Mn: A possible role of interfacial segregation[J]. Acta Mater., 2008, 56: 2203
[96]
Zurob H S, Hutchinson C R, Bréchet Y, et al.Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys[J]. Acta Mater., 2009, 57: 2781
[97]
Phillion A, Zurob H S, Hutchinson C R, et al.Studies of the influence of alloying elements on the growth of ferrite from austenite under decarburization conditions: Fe-C-Nl alloys[J]. Metall. Mater. Trans., 2004, 35A: 1237
[98]
Hutchinson C R, Zurob H S, Bréchet Y.The growth of ferrite in Fe-C-X alloys: The role of thermodynamics, diffusion, and interfacial conditions[J]. Metall. Mater. Trans., 2006, 37A: 1711
[99]
Béché A, Zurob H S, Hutchinson C R.Quantifying the solute drag effect of Cr on ferrite growth using controlled decarburization experiments[J]. Metall. Mater. Trans., 2007, 38A: 2950
[100]
Qiu C, Zurob H S, Panahi D, et al.Quantifying the solute drag effect on ferrite growth in Fe-C-X alloys using controlled decarburization experiments[J]. Metall. Mater. Trans., 2013, 44A: 3472
[101]
Chen H, Appolaire B, Van Der Zwaag S. Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling[J]. Acta Mater., 2011, 59: 6751
[102]
Chen H, Gamsj?ger E, Schider S, et al.In situ observation of austenite-ferrite interface migration in a lean Mn steel during cyclic partial phase transformations[J]. Acta Mater., 2013, 61: 2414
[103]
Chen H, Kuziak R, Van Der Zwaag S. Experimental evidence of the effect of alloying additions on the stagnant stage length during cyclic partial phase transformations[J]. Metall. Mater. Trans., 2013, 44A: 5617
[104]
Chen H, Van Der Zwaag S. Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages[J]. Acta Mater., 2013, 61: 1338
[105]
Sun W W, Zurob H S, Hutchinson C R.Coupled solute drag and transformation stasis during ferrite formation in Fe-C-Mn-Mo[J]. Acta Mater., 2017, 139: 62