Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 228-246    DOI: 10.11900/0412.1961.2017.00360
Orginal Article Current Issue | Archive | Adv Search |
Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes
Qiang WANG1(), Ming HE1,2, Xiaowei ZHU1,2, Xianliang LI1,3, Chunlei WU1,2, Shulin DONG1, Tie LIU1
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education),Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes. Acta Metall Sin, 2018, 54(2): 228-246.

Download:  HTML  PDF(9779KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The application of electromagnetic fields is an important way to control the physical and chemical changes of heat transfer, mass transfer, fluid flow and solidification in metallurgical and material preparation processes. It is of great significance to improve the production efficiency and product quality. In this paper, the authors summarize the research contents and progress of numerical simulation on several typical applications of electromagnetic technology in metallurgical fields in recent years, including the electromagnetic steel-teeming technology using induction heating and induction heating technology of a tundish, the applications of electromagnetic force such as the electromagnetic swirling technology in submerged entry nozzle, the soft-contact mold electromagnetic continuous casting technology and the electromagnetic metallurgical technology for tundish, the influence and control of electromagnetic force on so lidified structure evolution, and also the electromagnetic cold crucible technology with comprehensive utilization of induction heat and electromagnetic force. Numerical simulation, as an important research method, is a very important tool in finding out the mechanism and rules of electromagnetic fields during metallurgical and material preparation processes to predict, analyze, and optimize metallurgical processes.

Key words:  electromagnetic field      metallurgical process      numerical simulation      continuous casting      transport phenomenon     
Received:  30 August 2017     
Fund: Supported by National Natural Science Foundation of China (No.U1560207)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00360     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/228

Fig.1  Schematic of electromagnetic steel teeming technology
Fig.2  Distribution and change of temperature of Fe-C alloy and upper nozzle with different time t [27]
(a) temperature distribution(b) temperature change of Fe-C alloy outer surface
Fig.3  Influence of electromagnetic steel-teeming system on temperature distribution of ladle bottom shell[28]
Fig.4  Growth rates of inclusions due to turbulent collision in rotation chamber[36]
Fig.5  Three-dimensional streamlines in the tundish with (a) and without (b) rotation[36]
Fig.6  Geometric diagram of tundish from front view (a) and top view (b)[39]
Fig.7  Comparison of RTD curves for tundish with pouring chamber and tundish with three electromagnetic dams[42] (RTD—residence time distribution)
Fig.8  Schematic of electromagnetic swirling technology in the submerged entry nozzle
Fig.9  Simulation results of swirling flow nozzle with blade and electromagnetic swirling in the submerged entry nozzle (SEN)[8](a) swirling flow nozzle with blade(b) electromagnetic swirling in the submerged entry nozzle(c) simulation result of swirling flow nozzle with blade (d) simulation result of electromagnetic swirling in the submerged entry nozzle
Fig.10  Flow fields (a, c) and temperature fields (b, d) in round billet mold without (a, b) and with (c, d) electromagnetic swirling in the submerged entry nozzle[8]
Fig.11  Flow field and temperature field in slab mold without (a) and with (b) electromagnetic swirling in the submerged entry nozzle[8]
Fig.12  Flow fields in mold without (a) and with (b) modified nozzle[8]
Fig.13  Schematic of electromagnetic braking (EMBR)
Fig.14  Schematic of two-stage soft-contact mold
Fig.15  Magnetic flux density (Bz) distributions on the section of mold system (a) and the surface of strand (b)[73]
Fig.16  Effect of the length (L) of top half of mold on thickness of initial solidified shell[9]
Fig.17  Simulated solidification microstructures of continuous casting billet with electromagnetic stirring (EMS)[84](a) growth of nucleation towards liquid phase(b) growth of columnar crystals(c) transition from columnar crystals to equiaxed crystals(d) formation of fine equiaxed crystals(e) solidification of continuous casting square billet completed
Fig.18  Simulated microstructures of continuous casting billet without (a) and with (b) EMS[84]
Fig.19  Computed flow field of central cross section[85]
Fig.20  Magnetic force distributions in melt during pulsed period at the charging stage (a) and discharging stage (b)[89]
Fig.21  Fluid patterns under pulsed magnetic field in rectangular samples at 25 s with the aspect ratios of 1.0 (a), 2.0 (b), 4.5 (c) and 5.5 (d)[90]
Fig.22  Distributions of electromagnetic force (a) and flow field (b) in melt under pulse magneto oscillation[93]
Fig.23  Comparison of average solute concentration distribution in radial direction between electromagnetic centrifugal solidification (B=0.05 T) and conventional centrifugal casting (B=0 T) at t=4 s[98]
Fig.24  Schematic of structure and principle in electromagnetic cold crucible (F—Lorentz force)
Fig.25  Temperature fields for Ti6Al4V alloys at different time[110](a) 45 s (b) 60 s (c) 70 s (d) 115 s (e) 200 s (f) 500 s
Fig.26  Optimum process window for cold crucible directionally solidifying TiAl alloys[105](Ls—the line for start-up heating and melting. The charge can be melted only when the power exceeds Ps; Lt1 and Lt2—the line for turbulence flow; Pt1 and Pt2—the turbulence flow power, when the power is over Pt1, the EMS effect in the melting pool is more intensive, and the heat flow ahead of the solidification interface is turbulent and disordered, which will disturb the continuous growth of columnar grains; f1 and f2—the current frequency; L1 and L2—the limited region for obtaining a planar interface; L3 and L4—the limited region to obtain enough superheat)
[1] Campbell J.Melting, remelting, and casting for clean steel[J]. Steel Res. Int., 2017, 88(1): 1600093
[2] Leont'ev L I, Grigorovich K V, Kostina M V. The development of new metallurgical materials and technologies. Part 1[J]. Steel Transl., 2016, 46: 6
[3] Yu H Q, Zhu M Y.Multiphase flow phenomena in a slab continuous casting mold with electromagnetic brake and argon gas injection[J]. Acta Metall. Sin., 2008, 44: 619(于海岐, 朱苗勇. 板坯连铸结晶器电磁制动和吹氩过程的多相流动现象[J]. 金属学报, 2008, 44: 619)
[4] Li B K, He J C.Application of electromagnetic force in refining and continuous casting of molten steel—recalling of metallurgical application of magneto hydrodynamics for past ten years and its prospecting[J]. J. Mater. Metall., 2003, 2: 246(李宝宽, 赫冀成. 电磁力在钢精炼和连铸中的应用—电磁流体力学的冶金应用研究十年回顾和展望[J]. 材料与冶金学报, 2003, 2: 246)
[5] Asai S.The state of the field and its prospects of international development [A]. Proc. Intr. Cong. Electromagnetic Processing of Materials (EPM)[C]. Centre Fran?ais de l'Electricité, Paris, 1997: 5
[6] Wang K, He M, Wang Q, et al.Study status and development trend of new electromagnetic metallurgical technologies[J]. Angang Technol., 2015, (4): 1(王凯, 何明, 王强等. 电磁冶金新技术的研究现状与发展趋势[J]. 鞍钢技术, 2015, (4): 1)
[7] Wang Q, Li D J, Liu X A, et al.Effects of steel teeming in new slide gate system with electromagnetic induction[J]. J. Iron Steel Res. Int., 2015, 22: 30
[8] Li D W.Study on flow and temperature fields in submerged entry nozzle and mold during electromagnetic swirling flow continuous casting process of steel [D]. Shenyang: Northeastern University, 2013(李德伟. 钢的电磁旋流连铸过程中浸入式水口及结晶器内流场和温度场分析 [D]. 沈阳: 东北大学, 2013)
[9] Wang Q, Jin B G, Cui D W, et al.Analysis on cooling effect in two-stage slitless mold for soft-contact electromagnetic continuous casting[J]. Acta Metall. Sin., 2008, 44: 112(王强, 金百刚, 崔大伟等. 无缝软接触电磁连铸结晶器的冷却效果分析[J]. 金属学报, 2008, 44: 112)
[10] Chaboudez C, Clain S, Glardon R, et al.Numerical modeling in induction heating for axisymmetric geometries[J]. IEEE Trans. Mag., 1997, 33: 739
[11] Gao A, Wang Q, Li D J, et al.Efficiency and influencing factors of electromagnetic steel-teeming technology[J]. Acta Metall. Sin., 2010, 46: 634(高翱, 王强, 李德军等. 电磁引流技术的出钢效率及其影响因素[J]. 金属学报, 2010, 46: 634)
[12] Guo D, Irons G A.Modeling of gas-liquid reactions in ladle metallurgy, part II: Numerical simulation[J]. Metall. Mater. Trans., 2000, 31B: 1457
[13] Bermúdez A, Mu?iz M C, Salgado P.Asymptotic approximation and numerical simulation of electromagnetic casting[J]. Metall. Mater. Trans., 2003, 34B: 83
[14] Zhang H L, Yang S A, Zhang H H, et al.Numerical simulation of alumina-mixing process with a multicomponent flow model coupled with electromagnetic forces in aluminum reduction cells[J]. JOM, 2014, 66: 1210
[15] Liu X A, Wang Q, Li D J, et al.Coil design in electromagnetic induction-controlled automated steel-teeming system and its effects on system reliability[J]. ISIJ Int., 2014, 54: 482
[16] Li D W, Su Z J, Chen J, et al.Simulation on effect of divergent angle of submerged entry nozzle on flow and temperature field in round billet mold in electromagnetic swirling continuous casting process[J]. J. Iron Steel Res. Int., 2014, 21: 159
[17] Kranjc M, Zupanic A, Miklavcic D, et al.Numerical analysis and thermographic investigation of induction heating[J]. Int. J. Heat Mass Transfer, 2010, 53: 3585
[18] Lucía O, Maussion P, Dede E J, et al.Induction heating technology and its applications: Past developments, current technology, and future challenges[J]. IEEE Ind. Electron., 2014, 61: 2509
[19] Huang M S, Huang Y L.Effect of multi-layered induction coils on efficiency and uniformity of surface heating[J]. Int. J. Heat Mass Transfer, 2010, 53: 2414
[20] Tanaka H, Nishihara R, Kitagawa I, et al.Quantitative analysis of contamination of molten steel in tundish[J]. ISIJ Int., 1993, 33: 1238
[21] Suito H, Inoue R.Thermodynamics on control of inclusions composition in ultra-clean steels[J]. ISIJ Int., 1996, 36: 528
[22] He J C, Marukawa K, Wang Q.A new ladle with induction heating steel teeming device and new steel teeming method [P]. Chin Pat, 10045875.9, 2006(赫冀成, 丸川熊净, 王强. 一种带有加热出钢装置的钢包及其出钢方法 [P]. 中国专利, 10045875.9, 2006)
[23] Gao A, Wang Q, Wang C J, K. et al.A new steel teeming method and device to improve steel cleanliness [P]. Chin Pat, 10011159.2, 2009(高翱, 王强, 王长久等. 一种提高钢水洁净度的引流方法及其装置 [P]. 中国专利, 10011159.2, 2009)
[24] Wang Q, Li D J, Liu X A, et al.An installation method of a new steel teeming device in ladle using electromagnetic induction [P]. Chin Pat, 10220532.2, 2011(王强, 李德军, 刘兴安等. 一种钢包电磁感应加热出钢装置及其安装方法 [P]. 中国专利, 10220532.2, 2011)
[25] Gao A, Wang Q, Li D J, et al.State of Fe-C alloy in the electromagnetic steel-teeming system[J]. Acta Metall. Sin., 2011, 47: 219(高翱, 王强, 李德军等. 电磁出钢系统中Fe-C合金的状态研究[J]. 金属学报, 2011, 47: 219)
[26] He M, Wang Q, Liu X A, et al.Analysis of power supply heating effect during high temperature experiments based on the electromagnetic steel teeming technology[J]. High Temp. Mater. Pro., 2017, 36: 441
[27] Gao A, Li D J, Wang Q, et al.Analysis of an automatic steel-teeming method using electromagnetic induction heating in slide gate system[J]. ISIJ Int., 2009, 50: 1770
[28] Liu X A, Wang Q, Shi C Y, et al.Power supply design in electromagnetic induction controlled automatic steel-teeming system and its effects on system reliability[J]. J. Cent. South Univ.(Sci. Technol.), 2015, 46: 3188(刘兴安, 王强, 史纯阳等. 电磁出钢系统中感应加热电源设计及其对系统可靠性的影响[J]. 中南大学学报(自然科学版), 2015, 46: 3188)
[29] Sahai Y.Tundish technology for casting clean steel: A review[J]. Metall. Mater. Trans., 2016, 47B: 2095
[30] Dai C M, Lei H, Bi Q, et al.Mathematical simulation for tundish with the channel type induction heating[J]. Steelmaking, 2015, 31(4): 54(代传民, 雷洪, 毕乾等. 通道式感应加热中间包的数值模拟[J]. 炼钢, 2015, 31(4): 54)
[31] Cong L, Zhang J M, Lei S W, et al.Numerical simulation on tundish induction heating[J]. Res. Iron Steel, 2014, 42(3): 20(丛林, 张炯明, 雷少武等. 中间包感应加热的数值模拟[J]. 钢铁研究, 2014, 42(3): 20)
[32] Yue Q, Zhang C B, Pei X H.Magnetohydrodynamic flows and heat transfer in a twin-channel induction heating tundish[J]. Ironmak. Steelmak., 2017, 44: 227
[33] Wang Q, Li B K, Tsukihashi F.Modeling of a thermo-electromagneto-hydrodynamic problem in continuous casting tundish with channel type induction heating[J]. ISIJ Int., 2014, 54: 311
[34] Miki Y, Kitaoka H, Sakuraya T, et al.Mechanism for separating inclusions from molten steel stirred with a rotating electro-magnetic field[J]. Trans. ISIJ, 1992, 32: 142
[35] Miki Y, Kitaoka H, Bessho N, et al.Inclusion separation from molten steel in tundish with rotating electromagnetic field[J]. Tetsu Hagané, 1996, 82: 498(三木祐司, 北岡英就, 別所永康等, 遠心分離タンディッシュによる溶鋼中介在物の分離[J], 鉄と鋼, 1996, 82: 498)
[36] Wang Y, Zhong Y B, Ren Z M, et al.Numerical simulation of molten steel flow in centrifugal flow tundish[J]. Acta Metall. Sin., 2008, 44: 1203(王赟, 钟云波, 任忠鸣等. 离心中间包内钢液流动的数值模拟[J]. 金属学报, 2008, 44: 1203)
[37] Zhao L R, Wang Y, Zhong Y B, et al.Numerical simulation of flow pattern in the tundish for electromagnetic purification[J]. Shanghai Met., 2008, 30(6): 46(赵利荣, 王赟, 钟云波等. 电磁净化中间包内流场的数值模拟[J]. 上海金属, 2008, 30(6): 46)
[38] Huang A, Wang H Z, Gu H Z, et al.Research on mathematical simulation of inclusion removal and mechanism effect for gas curtain tundish[J]. J. Iron Steel Res. Int., 2008, 5: 478
[39] Huang A, Chao J I, Gu H Z, et al.Numerical simulation of inclusion removal in tundish with babbling curtain and electromagnetic field[J]. J. Iron Steel Res. Int., 2012, 19(S1): 162
[40] Xu T, Zhang L H, Li X Q, et al.Numerical simulation of fluid-thermal coupling field of tundish in static magnetic field[J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 365(徐婷, 张立华, 李晓谦等. 稳恒磁场下中间包温度场流场耦合数值模拟[J]. 特种铸造及有色冶金, 2015, 35: 365)
[41] Tripathi A.Mathematical modelling of flow control in a tundish using electro-magnetic forces[J]. Appl. Math. Model., 2011, 35: 5075
[42] Tripathi A.Numerical investigation of electro-magnetic flow control phenomenon in a tundish[J]. ISIJ Int., 2012, 52: 447
[43] Liu H P, Xu M G, Qiu S T, et al.Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring[J]. Metall. Mater. Trans., 2012, 43B: 1657
[44] Okazawa K, Toh T, Fukuda J, et al.Fluid flow in a continuous casting mold driven by linear induction motors[J]. ISIJ Int., 2001, 41: 851
[45] Toh T, Hasegawa H, Harada H.Evaluation of multiphase phenomena in mold pool under in-mold electromagnetic stirring in steel continuous casting[J]. ISIJ Int., 2001, 41: 1245
[46] Beitelman L.Effect of mold EMS design on billet casting productivity and product quality[J]. Can. Metall. Quart., 1999, 38: 301
[47] Fujisaki K.In-mold electromagnetic stirring in continuous casting[J]. IEEE Trans. Ind. Appl., 2001, 37: 1098
[48] Liu Y, Wang X H.Effect of electromagnetic stirring at secondary cooling area on central segregation of a continuously cast slab[J]. J. Univ. Sci. Technol. Beijing, 2007, 29: 586(刘洋, 王新华. 二冷区电磁搅拌对连铸板坯中心偏析的影响[J]. 北京科技大学学报, 2007, 29: 586)
[49] Wang X D, Wang B F, Cao J G, et al.Determination of F-EMS position and process parameters in bloom continuous caster[J]. Iron Steel, 2011, 46(8): 40(王晓东, 王宝峰, 曹建刚等. 大方坯末端电磁搅拌位置和连铸工艺参数的确定[J]. 钢铁, 2011, 46(8): 40)
[50] Spitzer K H, Dubke M, Schwerdtfeger K.Rotational electromagnetic stirring in continuous casting of round strands[J]. Metall. Mater. Trans., 1986, 17B: 119
[51] Natarajan T T, El-Kaddah N.Finite element analysis of electromagnetically driven flow in sub-mold stirring of steel billets and slabs[J]. ISIJ Int., 1998, 38: 680
[52] Ren B Z, Chen D F, Wang H D, et al.Numerical analysis of coupled turbulent flow and macroscopic solidification in a round bloom continuous casting mold with electromagnetic stirring[J]. Steel Res. Int., 2015, 86: 1104
[53] Yu H Q, Zhu M Y.Three-dimensional magnetohydrodynamic calculation for coupling multiphase flow in round billet continuous casting mold with electromagnetic stirring[J]. IEEE Trans. Mag., 2010, 46: 82
[54] Tsukaguchi Y, Hayashi H, Kurimoto H, et al.Development of swirling-flow submerged entry nozzles for slab casting[J]. ISIJ Int., 2010, 50: 721
[55] Yokoya S, Asako Y, Hara S, et al.Control of immersion nozzle outlet flow pattern through the use of swirling flow in continuous casting[J]. ISIJ Int., 1994, 34: 883
[56] Yokoya S, Takagi S, Iguchi M, et al.Swirling effect in immersion nozzle on flow and heat transport in billet continuous casting mold[J]. ISIJ Int., 1998, 38: 827
[57] Yokoya S, Takagi S, Iguchi M, et al.Swirling flow effect in immersion nozzle on flow in slab continuous casting mold[J]. ISIJ Int., 2000, 40: 578
[58] Yokoya S, Takagi S, Kaneko M, et al.Swirling flow effect in off-center immersion nozzle on bulk flow in billet continuous casting mold[J]. ISIJ Int., 2001, 41: 1215
[59] Tsukaguchi Y, Hayashi H, Yokoya S, et al.Swirling flow submerged entry nozzle for round billet casting[J]. Tetsu Hagané, 2007, 93: 575(塚口友一, 林浩史, 横谷真一郎等, 丸ビレット連続鋳造用旋回流浸漬ノズル[J]. 鉄と鋼, 2007, 93: 575)
[60] He J C, Marukawa K, Su Z J.Electromagnetic swirling technology in the submerged entry nozzle [P]. Chin Pat, 10047290.6, 2005(赫冀成, 丸川雄净, 苏志坚. 电磁旋流水口 [P]. 中国专利: 10047290.6, 2005)
[61] Li D W, Su Z J, Chen J, et al.Numerical simulation of swirling flow in divergent submerged entry nozzle in round billet continuous casting of steel[J]. Acta Metall. Sin., 2013, 49: 871(李德伟, 苏志坚, 陈进等. 钢圆坯连铸过程中渐开式电磁旋流水口数值模拟[J]. 金属学报, 2013, 49: 871)
[62] Su Z J, Li D W, Sun L W, et al.Numerical simulation of swirling flow in immersion nozzle induced by a rotating electromagnetic field in round billet[J]. Acta Metall. Sin., 2010, 46: 479(苏志坚, 李德伟, 孙立为等. 圆坯连铸电磁旋流水口的数值模拟[J]. 金属学报, 2010, 46: 479)
[63] Ni S Q, Peng S H, Qiu S T, et al.Development of electromagnetic brake technique and application in slab continuous casting mold[J]. Continu. Cast., 2009, (1): 40(倪升起, 彭世恒, 仇圣桃等. 电磁制动技术的发展及在板坯连铸结晶器中的应用[J]. 连铸, 2009, (1): 40)
[64] Ha M Y, Lee H G, Seong S H.Numerical simulation of three-dimensional flow, heat transfer, and solidification of steel in continuous casting mold with electromagnetic brake[J]. J. Mater. Process. Technol., 2003, 133: 322
[65] Li B, Tsukihashi F.Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold[J]. ISIJ Int., 2006, 46: 1833
[66] Wang Y F, Zhang L F.Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake[J]. Metall. Mater. Trans., 2011, 42B: 1319
[67] Cukierski K, Thomas B G.Flow control with local electromagnetic braking in continuous casting of steel slabs[J]. Metall. Mater. Trans., 2008, 39B: 94
[68] Chaudhary R, Thomas B G, Vanka S P.Effect of electromagnetic ruler braking (EMBR) on transient turbulent flow in continuous slab casting using large eddy simulations[J]. Metall. Mater. Trans., 2012, 43B: 532
[69] Zhou H Q, Zhang Y Z, Gao S P.The application of electromagnetic casting technology to continuous casting[J]. Shanghai Met., 2000, 22(1): 3(周焕勤, 张译中, 高少平. 用于连铸的电磁铸造技术[J]. 上海金属, 2000, 22(1): 3)
[70] Jin B G, Wang Q, Cui D W, et al.Numerical simulation of cooling effect in slit mold for soft contact electromagnetic continuous casting[J]. Foundry Technol., 2007, 28: 1468(金百刚, 王强, 崔大伟等. 切缝式软接触电磁连铸结晶器的冷却效果分析[J]. 铸造技术, 2007, 28: 1468)
[71] Jin B G, Wang Q, Cui D W, et al.Numerical simulation of electromagnetism parameters and structure parameters in two-stage slit-less mold[J]. Acta Metall. Sin., 2007, 43: 427(金百刚, 王强, 崔大伟等. 两段式无缝软接触结晶器电磁参数和结构参数的研究[J]. 金属学报, 2007, 43: 427)
[72] Jin B G, Wang Q, Liu Y, et al.Electromagnetic field distribution in two-stage slitless mold for soft contact electromagnetic continuous casting mold[J]. Acta Metall. Sin., 2007, 43: 999(金百刚, 王强, 刘岩等. 两段式无缝软接触电磁连铸结晶器内的电磁场分布[J]. 金属学报, 2007, 43: 999)
[73] Jin B G, Wang Q, Gao A, et al.Electromagnetic field distribution in two-section slitless mold for soft-contact electromagnetic continuous casting[J]. ISIJ Int., 2009, 49: 44
[74] Thess A, Kolesnikov Y, Karcher C.Lorentz force velocimetry—A contactless technique for flow measurement in high-temperature melts [A]. Proceedings of 5th International Symposium on Electromagnetic Processing of Materials[C]. Sendai: The Iron and Steel Institute of Japan, 2006: 731
[75] Hou J B, Liu Y.Retrospect and development of electromagnetic pump casting technology[J]. Cast. Forg. Weld., 2010, 39(17): 64(侯击波, 刘云. 电磁泵铸造技术的回顾及发展[J]. 金属铸锻焊技术, 2010, 39(17): 64)
[76] Li H X, Wang Q, Lei H, et al.Mechanism analysis of free-surface vortex formation during steel teeming[J]. ISIJ Int., 2014, 54: 1592
[77] Li H X, Wang Q, Jiang J W, et al.Analysis of factors affecting free surface vortex formation during steel teeming[J]. ISIJ Int., 2016, 56: 94
[78] Kubota J, Kubo N, Ishii T, et al.Steel flow control in continuous slab caster mold by traveling magnetic field[J]. NKK Tech. Rev., 2001, 85: 1
[79] Kubota J, Kubo N, Suzuki M, et al.Steel flow control with travelling magnetic field for slab continuous castermold[J]. Tetsu Hagané, 2000, 86: 271(久保田淳, 久保典子, 鈴木真等. 移動磁場によるスラブ連鋳機の鋳型内溶鋼流動制御[J]. 鉄と鋼, 2000, 86: 271)
[80] Wang H L, Yan X, Lei Z S, et al.Study on side containment technology of twin-roll thin strip continuous casting[J]. Steelmaking, 2007, 23: 54(王贺利, 闫欣, 雷作盛等. 双辊薄带钢连铸侧封技术研究[J]. 炼钢, 2007, 23: 54)
[81] Xu Q T, Li J D, Sun Z Q.Application of dendrite corrosion macroscopic examination on the continuous casting[J]. Phys. Exam. Test., 2011, 29(6): 22(许庆太, 李吉东, 孙中强. 枝晶腐蚀低倍检验在连铸生产中的应用[J]. 物理测试, 2011, 29(6): 22)
[82] Tzavaras A A, Brody H D.Electromagnetic stirring and continuous casting—Achievements, problems, and goals[J]. JOM, 1984, 36(3): 31
[83] Yamazaki M, Natsume Y, Harada H, et al.Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass%C alloy using cellular automaton method[J]. ISIJ Int., 2006, 46: 903
[84] Geng M S, Han Q L.Simulation of solidification microstructure of continuous casting billet under electromagnetic stirring[J]. Contin. Cast., 2013, (6): 43(耿明山, 韩庆礼. 电磁搅拌下连铸方坯凝固组织模拟[J]. 连铸, 2013, (6): 43)
[85] Luo S, Piao F Y, Jiang D B, et al.Numerical simulation and experimental study of F-EMS for continuously cast billet of high carbon steel[J]. J. Iron Steel Res. Int., 2014, 21(S1): 51
[86] Zhang C X, Zhang Z F, Xu J.Numerical simulation on solidification structure of aluminum alloy under electromagnetic stirring[J]. Foundry Technol., 2012, 33: 280(张衬新, 张志峰, 徐骏. 电磁搅拌作用下铝合金凝固组织的数值模拟[J]. 铸造技术, 2012, 33: 280)
[87] Liu C G, Qiu X W.The latest development of laser melting technology[J]. Nonferrous Met. Process., 2011, 40(6): 21(刘春阁, 邱星武. 激光熔凝技术的发展现状[J]. 有色金属加工, 2011, 40(6): 21)
[88] Yang G, Zhao E D, Qin L Y, et al.Effect of electromagnetic stirring on melt pool solidification of laser melting TA15 titanium alloy[J]. Rare Met. Mater. Eng., 2017, 46: 966(杨光, 赵恩迪, 钦兰云等. 电磁搅拌对激光熔凝TA15钛合金熔池凝固研究 [J]. 稀有金属材料与工程, 2017, 46: 966)
[89] Yang Y S, Fu J W, Luo T J, et al.Grain refinement of magnesium alloys under low-voltage pulsed magnetic field[J]. Chin. J. Nonferrous Met., 2011, 21: 2639(杨院生, 付俊伟, 罗天骄等. 镁合金低压脉冲磁场晶粒细化[J]. 中国有色金属学报, 2011, 21: 2639)
[90] Teng Y F, Li Y J, Feng X H, et al.Effect of rectangle aspect ratio on grain refinement of super alloy K4169 under pulsed magnetic field[J]. Acta Metall. Sin., 2015, 51: 844(滕跃飞, 李应举, 冯小辉等. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响[J]. 金属学报, 2015, 51: 844)
[91] Zhang Y H, Zhong H G, Zhai Q J.Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields[J]. J. Iron Steel Res., 2017, 29: 249(张云虎, 仲红刚, 翟启杰. 脉冲电磁场凝固组织细化和均质化技术研究与应用进展[J]. 钢铁研究学报, 2017, 29: 249)
[92] Zhai Q J, Gong Y Y, Li R X.Solidification process and grain refinement technology[J]. J. Mater. Metall., 2015, 14: 81(翟启杰, 龚永勇, 李仁兴. 金属凝固过程与细晶技术[J]. 材料与冶金学报, 2015, 14: 81)
[93] Liu T Y, Sun J, Sheng C, et al.Influence of pulse magneto-oscillation on the efficiency of grain refiner[J]. Adv. Manuf., 2017, 5: 143
[94] Zhang W Q, Yang Y S, Liu Q M, et al.Structural transition and macrosegregation of Al-Cu eutectic alloy solidified in the electromagnetic centrifugal casting process[J]. Metall. Mater. Trans., 1998, 29A: 404
[95] Zhang T, Wang Q, Song X, et al.Effect of electromagnetic centrifugal casting on solidification microstructure of cast high speed steel roll[J]. Materialwiss. Werkstofftech., 2011, 42: 557
[96] He Y L, Yang Y S, Yu L, et al.Numerical simulation on the macrostructures of electromagnetic centrifugal casting[J]. Acta Metall. Sin., 2000, 36: 874(贺幼良, 杨院生, 于力等. 电磁离心铸件宏观组织的数值模拟[J]. 金属学报, 2000, 36: 874)
[97] He Y L, Yang Y S, Hu Z Q.Finite element simulation of the melt flow and heat transfer in electromagnetic centrifugal casting[J]. Foundry, 2000, 49: 473(贺幼良, 杨院生, 胡壮麒. 电磁离心凝固过程熔体流动和传热的有限元数值模拟[J]. 铸造, 2000, 49: 473)
[98] Guo D Y, Yang Y S, Tong W H, et al.Numerical simulation of macrosegregation during electromagnetic centrifugal solidification[J]. Acta Metall. Sin., 2004, 40: 275(郭大勇, 杨院生, 童文辉等. 电磁离心凝固过程中宏观偏析的数值模拟[J]. 金属学报, 2004, 40: 275)
[99] Guo D Y, Yang Y S, Tong W H, et al.Simulation of electromagnetic force driven melt flow and fracture of dendrites[J]. Acta Metall. Sin., 2003, 39: 914(郭大勇, 杨院生, 童文辉等. 电磁驱动熔体流动与枝晶变形断裂模拟[J]. 金属学报, 2003, 39: 914)
[100] Durand F.The electromagnetic cold crucible as a tool for melt preparation and continuous casting[J]. Int. J. Cast Met. Res., 2005, 18: 93
[101] Morisue T, Yajima T, Kume T, et al.Analysis of electromagnetic force for shaping the free surface of a molten metal in a cold crucible[J]. IEEE Trans. Mag., 2002, 29: 1562
[102] Jiang B Y.The development and applications of cold crucible induction melting of rcactive alloys[J]. Rare Met. Mater. Eng., 1993, 22(2): 1(蒋炳玉. 冷坩埚感应熔炼活性金属的发展与应用[J]. 稀有金属材料与工程, 1993, 22(2): 1)
[103] Chen R R, Guo J J, Ding H S, et al.Research and development of cold crucible melting and casting technology[J]. Foundry, 2007, 56: 443(陈瑞润, 郭景杰, 丁宏升等. 冷坩埚熔铸技术的研究及开发现状[J]. 铸造, 2007, 56: 443)
[104] Deng K, Ren Z M, Chen J Q, et al.The electromagnetic levitation in melting process with cold crucible[J]. Acta Metall. Sin., 1999, 35: 739(邓康, 任忠鸣, 陈坚强等. 水冷坩埚熔炼的电磁悬浮特性[J]. 金属学报, 1999, 35: 739)
[105] Yang J R, Chen R R, Ding H S, et al.Heat transfer and macrostructure formation of Nb containing TiAl alloy directionally solidified by square cold crucible[J]. Intermetallics, 2013, 42: 184
[106] Yang J R, Chen R R, Ding H S, et al.Flow field and its effect on microstructure in cold crucible directional solidificaiton of Nb containing TiAl alloy[J]. J. Mater. Process. Technol., 2014, 214: 735
[107] Yang J R, Chen R R, Guo J J, et al.Temperature distribution in bottomless electromagnetic cold crucible applied to directional solidification[J]. Int. J. Heat Mass Transfer, 2016, 100: 131
[108] Chen R R, Ding H S, Bi W S, et al.Distribution of electromagnetic field in cold crucible for electromagnetic confinement[J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 615(陈瑞润, 丁宏升, 毕维生等. 电磁约束成形用冷坩埚内磁场分布规律[J]. 特种铸造及有色合金, 2006, 26: 615)
[109] Ding H S, Chen R R, Guo J J, et al.Directional solidificaiton of titanium alloys by electromagnetic confinement in cold crucible[J]. Mater. Lett., 2005, 59: 741
[110] Chen R R, Ding H S, Guo J J, et al.Temperature field calculation on cold crucible continuous melting and directional solidification of Ti6Al4V alloy[J]. Rare Met. Mater. Eng., 2007, 36: 1722(陈瑞润, 丁宏升, 郭景杰等. 冷坩埚连续熔铸与定向凝固Ti6Al4V合金的温度场计算[J]. 稀有金属材料与工程, 2007, 36: 1722)
[111] Chen R R, Yang J R, Ding H S, et al.Magnetic field in a near-rectangular cold crucible designed for continuously melting and directionally solidifying TiAl alloys[J]. J. Mater. Process. Technol., 2012, 212: 1934
[112] Yang J R, Chen R R, Ding H S, et al.Mechanism and evolution of heat transfer in mushy zone during cold crucible directionally solidifying TiAl alloys[J]. Int. J. Heat Mass Transfer, 2013, 63: 216
[113] Yan Y C, Ding H S, Kang Y W, et al.Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification[J]. Mater. Des., 2014, 55: 450
[114] Chen R R, Huang F, Guo J J, et al.Effect of parameters on the grain growth of silicon ingots prepared by electromagnetic cold crucible continuous casting[J]. J. Cryst. Growth, 2011, 332: 68
[115] Sun D L, Chen H C, Song Y Y.Cold crucible technique and its application to crystal growth[J]. J. Synth. Cryst., 1990, 19: 172(孙大亮, 陈焕矗, 宋永远. 冷舟冷坩埚技术及其在单晶体生长中的应用[J]. 人工晶体学报, 1990, 19: 172)
[116] Chen R R, Ding H S, Bi W S, et al.Electromagnetic cold crucible technology and its application[J]. Rare Met. Mater. Eng., 2005, 34: 510(陈瑞润, 丁宏升, 毕维生等. 电磁冷坩埚技术及其应用[J]. 稀有金属材料与工程, 2005, 34: 510)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[7] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[8] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[9] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[10] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[12] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[13] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[14] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[15] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
No Suggested Reading articles found!