Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (7): 817-823    DOI: 10.11900/0412.1961.2016.00322
Orginal Article Current Issue | Archive | Adv Search |
Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy
Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU()
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
Cite this article: 

Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy. Acta Metall Sin, 2017, 53(7): 817-823.

Download:  HTML  PDF(2482KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Uranium is a valuable nuclear fuel material, but this application is unavoidably handicapped by the easy creep behavior of the metal caused by the combination of stress and irradiation in nuclear reactor. Uranium-based amorphous alloys, as a kind of potential new materials in the nuclear industry, would be challenged by this issue when used in such situation. However, creep properties of these materials have not been reported in the previous studies. In order to preliminarily investigate the creep phenomenon derived from stress function, this work is performed to study the ambient creep behavior of a new amorphous alloy U65Fe30Al5. This alloy was tested by using a nanoindentation technique under different peak loads and loading rates. The results indicate that the creep displacement gradually increases with either the peak load or the loading rate in equal creeping time, but this tendency vanishes when exceeding a critical loading rate. The fitting based on an empirical creep equation reveals that the stress exponent of the alloy ascends when raising the peak load, and firstly declines with the loading rate and then keeps constant above the critical rate. Compared with conventional crystalline alloys, the U-Co-Al alloy shows a larger stress exponent, reflecting the possible existence of rich free volume in the amorphous alloy.

Key words:  amorphous alloy      uranium alloy      nanoindentation      creep      stress exponent     
Received:  21 July 2016     
Fund: Supported by National Natural Science Foundation of China (No.51501169), National Defense Basic Scientific Research (No.B1520133007) and Scientific and Technological Development Foundation of China Academy of Engineering Physics (Nos.2013A0301015 and 2014B0302047)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00322     OR     https://www.ams.org.cn/EN/Y2017/V53/I7/817

Fig.1  Loading function and ideal characteristic curves for nanoindentation creep (S—contact stiffness, h—indentation depth, F—load, hmax—maximum indentation depth, hf—permanent deformation depth after fully unloading, t—time, σ—stress)

(a) load-time curve (b) load-depth curve (c) standard creep depth-time curve

Fig.2  XRD spectrum of U65Fe30Al5 amorphous alloy
Fig.3  Load-depth (a) and creep displacement-time (b) curves during 30 s nanoindentation creeping under different peak loads (The curves in the Fig.3b are offset from the origin points of the creep process)
Fig.4  Load-depth (a) and creep displacement-time (b) curves during 30 s nanoindentation creeping under different loading rates (Curves in Fig.4a are translation-transformed)
Fig.5  Variation of creep displacement versus peak load (a) and loading rate (b) during the nanoindentation creeping of U65Fe30Al5 amorphous alloy
Fig.6  Experimental and fitting curve (Eq.(3)) (a) and the variation of stress exponent derived from stress-strain rate relationship curve (b) during the nanoindentation creeping of U65Fe30Al5 amorphous alloy (h0—initial creep displacement, t0—initial creep time, a and k—fitting parameters)
Fig.7  Curves of stress exponent-peak load (a) and stress exponent-loading rate (b) during the steady creeping of U65Fe30Al5 amorphous alloy(n—stress exponent)
Composition Material type Peak load mN Creep time / s Loading rate mNs-1 Stress exponent
U65Fe30Al5 Amorphous 100 30 20 89
Ti40Zr25Ni3Cu12Be20[18] Amorphous 100 2000 0.1 5
Ta film[24] Amorphous 8 40 5 78.7
Fused quartz[20] Glass 69.4 95 - 85
B6O[26] Polycrystalline 100 15 200 0.14
Table 1  Creep stress exponents for different materials in nanoindentation tests
[1] Mu X Y.Creep Mechanics [M]. Xi'an: Xi'an Jiaotong University Press, 1990: 67
[1] (穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990: 67)
[2] ?adek J.Creep in Metallic Materials[M]. Amsterdam: Elsevier Science Ltd., 1988: 85
[3] Nabarro F R N, de Villiers H L. The Physics of Creep[M]. London: Taylor and Francis, 1995: 113
[4] Li W B, Henshall J L, Hooper R M, et al.The mechanisms of indentation creep[J]. Acta Metall. Mater., 1991, 39: 3099
[5] Ranaivomanana N, Multon S, Turatsinze A.Basic creep of concrete under compression, tension and bending[J]. Constr. Build. Mater., 2013, 38: 173
[6] Mahmudi R, Roumina R, Raeisinia B.Nvestigation of stress exponent in the power-law creep of Pb-Sb alloys[J]. Mater. Sci. Eng., 2004, A382: 15
[7] Gao Y, Wen S P, Wang X H, et al.Investigation on indentation creep by depth sensing indentation[J]. J. Aeronaut. Mater., 2006, 26(3): 148
[7] (高阳, 文胜平, 王晓慧等. 纳米压痕法测试压痕蠕变的应用研究[J]. 航空材料学报, 2006, 26(3): 148)
[8] Elmustafa A A, Stone D S.Strain rate sensitivity in nanoindentation creep of hard materials[J]. J. Mater. Res., 2007, 22: 2912
[9] Lucas B N, Oliver W C.Indentation power-law creep of high-purity indium[J]. Metall. Mater. Trans., 1999, 30A: 601
[10] Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33: 177
[10] (汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33: 177)
[11] Huang H G, Wang Y M, Chen L, et al.Study on formation and corrosion resistance of amorphous alloy in U-Co system[J]. Acta Metall. Sin., 2015, 51: 623
[11] (黄火根, 王英敏, 陈亮等. U-Co系非晶合金的形成与耐蚀性研究[J]. 金属学报, 2015, 51: 623)
[12] Huang H G, Ke H B, Wang Y M, et al.Stable U-based metallic glasses[J]. J. Alloys Compd., 2016, 684: 75
[13] Bleiberg M L, Jones L J, Lustman B.Phase changes in pile-irradiated uranium-base alloys[J]. J. Appl. Phys., 1956, 27: 1270
[14] Elliott R O, Giessen B C.On the formation of metallic glasses based on U, Np or Pu[J]. Acta Metall., 1982, 30: 785
[15] Huang H G, Ke H B, Zhang P, et al.Effect of minor alloying on the glass formation of U-based alloys[J]. J. Alloys Compd., 2016, 688: 599
[16] Yang Y, Zeng J F, Ye J C, et al.Structural inhomogeneity and anelastic deformation in metallic glasses revealed by spherical nanoindentation[J]. Appl. Phys. Lett., 2010, 97: 261905
[17] Ma Y, Peng G J, Feng Y H, et al.Nanoindentation investigation on the creep mechanism in metallic glassy films[J]. Mater. Sci. Eng., 2016, A651: 548
[18] Huang Y J, Chiu Y L, Shen J, et al.Indentation creep of a Ti-based metallic glass[J]. J. Mater. Res., 2009, 24: 993
[19] Pang J J, Tan M J, Liew K M, et al.Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7 [J]. Physics, 2012, 407B: 340
[20] Li H, Ngan A H W. Size effects of nanoindentation creep[J]. J. Mater. Res., 2004, 19: 513
[21] Schuh C A, Lund A C, Nieh T G.New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling[J]. Acta Mater., 2004, 52: 5879
[22] Spaepen F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall., 1977, 25: 407
[23] Argon A S.Plastic deformation in metallic glasses[J]. Acta Metall., 1979, 27: 47
[24] Cao Z H, Li P Y, Meng X K.Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films[J]. Mater. Sci. Eng., 2009, A516: 253
[25] Zhang H W, Jing X N, Subhash G, et al.Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation[J]. Acta Mater., 2005, 53: 3849
[26] Machaka R, Derry T E, Sigalas L.Room temperature nanoindentation creep of hot-pressed B6O[J]. Mater. Sci. Eng., 2014, A607: 521
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[8] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[9] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[10] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[11] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[12] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[13] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[14] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[15] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
No Suggested Reading articles found!