Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1403-1412    DOI: 10.11900/0412.1961.2016.00103
Orginal Article Current Issue | Archive | Adv Search |
STRAIN FIELD AND FRACTURE BEHAVIOR OF Ti/Al DISSIMILAR ALLOY JOINT UNDER IN SITU TENSILE TEST
Zhiwu XU1,Zhipeng MA1,2,Jiuchun YAN1,Yuku ZHANG2,Xuyun ZHANG2
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Department of Materials Science and Engineering, Northeast Petroleum University, Daqing 163318, China
Cite this article: 

Zhiwu XU,Zhipeng MA,Jiuchun YAN,Yuku ZHANG,Xuyun ZHANG. STRAIN FIELD AND FRACTURE BEHAVIOR OF Ti/Al DISSIMILAR ALLOY JOINT UNDER IN SITU TENSILE TEST. Acta Metall Sin, 2016, 52(11): 1403-1412.

Download:  HTML  PDF(1387KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The prospect of joining titanium and aluminum components into structures is desirable for a wide range of aerospace and automobile industry applications. One of the problems related with the joining processes for dissimilar metals such as Ti and Al is the formation of residual stress in the bonded joint, which has significant effect on the joint mechanical properties. In this work, joining of a titanium alloy to an aluminum alloy by ultrasonic assisted brazing using a Zn-Al filler metal was investigated. The microstructures of the titanium/aluminum brazed joints were determined by OM, SEM and TEM. The local tensile deformation characteristics of the brazed joints were also examined using the digital image correlation (DIC) methodology by mapping the local strain distribution during in situ tensile tests. The results showed that the Ti7Al5Si12 phase and the TiAl3 phase were formed at the titanium/brazing seam interface. The brazing seam was primarily composed of a Zn-rich phase and a Zn-24.14%Al (mass fraction) eutectoid structure. At the aluminum/brazing seam interface, no interfacial reaction layer was observed and the primary phase Zn-Al dendrites nucleated at the aluminum base metal and grew into the inside of the bonding region. A diffusion layer was formed in the aluminum base metal. It was found that the tensile deformation of the brazed joints was highly heterogeneous, which led to the deflection of the crack during propagating in the joint. The fracture initiated at the Zn-rich phases, where contained the highest stress concentration due to their low elastic modulus, and propagated in the Zn-rich phases or through the interface between Zn-rich phase and Zn-Al eutectoid structure.

Key words:  Ti/Al      dissimilar      alloy,      in      situ      tensile,      strain      field,      fracture      behavior     
Received:  28 March 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51075104 and 50905044)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00103     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1403

Fig.1  Schematic of ultrasonic assisted brazing
Fig.2  Macrostructure of in suit tensile sample
Position Zn Al Ti Si Possible phase
1 97.87 1.56 - 0.57 Zn rich phase
2 75.49 24.14 - 0.37 Zn-Al eutectoid structure
3 14.66 14.84 44.50 26.00 Ti7Al5Si12
4 14.12 54.21 28.28 3.39 TiAl3
Table 1  EDS analyses of different locations in Fig.3

(mass fraction / %)

Fig.3  SEM images of Ti/Al dissimilar alloy brazed joint (a) and the interfacial zone close to Ti alloy of the joint (b) (Inset in Fig.3a shows the bright field TEM image in the rectangular area and the insets in Fig.3b show the corresponding SAED patterns in the circle areas)
Fig.4  Force-extension curve of Ti/Al dissimilar alloy brazed joint
Fig.5  Typical crack path of Ti/Al dissimilar alloy brazed joint (a), the local magnification of crack (b) and fractograph of Ti side in the joint (c)
Phase Elastic modulus Nano-indentation hardness
Zn-Al eutectoid structure 106~108 1.50~1.56
Zn rich phase 89~94 1.39~1.43
Table 2  Nano-indentation hardness and elastic modulus of brazed joint of Ti/Al dissimilar alloy
Fig.6  SEM-BSE images of Ti/Al dissimilar alloy brazed joint at the same area showed by rectangular area under the loading of 200 N (a), 400 N (b) and 480 N (c)
Fig.7  2D (a, b) and 3D (c, d) strain profiles of Ti/Al dissimilar alloy brazed joint in the parallel tensile direction (a, c) and vertical tensile direction (b, d) under the loading of 200 N
Fig.9  2D (a, b) and 3D (c, d) strain profiles of Ti/Al dissimilar alloy brazed joint in the parallel tensile direction (a, c) and in the vertical tensile direction (b, d) under the loading of 480 N
Fig.8  2D (a, b) and 3D (c, d) strain profiles of Ti/Al dissimilar alloy brazed joint in the parallel tensile direction (a, c) and vertical tensile direction (b, d) under the loading of 400 N
Fig.10  Superposition maps of strain profiles and SEM-BSE images of Ti/Al dissimilar alloy brazed joint under the loading of 200 N (a), 400 N (b) and 480 N (c)
Fig.11  Schematic of the cracking path perpendicular to the interface (a) and parallel to the interface (b) of Ti/Al brazed joint (G—energy release rate of main crack; Gkink—energy release rate of the secondary crack; Gt(Ω)—energy release rate at the crack tip after crack deflection; α—mismatch parameter in the interface; Ω—angle of crack deflection)
[1] Vaidya W V, Horstmann M, Ventzke V, Petrovski B, Koak M, Kocik R, Tempus G.J Mater Sci, 2010; 45: 6242
[2] Chen S H, Li L Q, Chen Y B, Liu D J.Trans Nonferrous Met Soc China, 2010; 20: 64
[3] Sohn W H, Bong H H, Hong S H.Mater Sci Eng, 2003; A355: 231
[4] Yao W, Wu A P, Zou G S, Ren J L.Mater Lett, 2008; 62: 2836
[5] AlHazaa A, Khan T I, Haq I. Mater Charact, 2010; 61: 312
[6] Chen X G, Yan J C, Gao F, Wei J H, Xu Z W, Fan G H.Ultrason Sonochem, 2013; 20: 144
[7] Chang S Y, Tsao L C, Lei Y H, Mao S M, Huang C H. J Mater Process Technol, 2012; 212: 8
[8] Ma Z P, Wang C W, Yu H C, Yan J C, Shen H R.Mater Des, 2013; 45: 72
[9] Chen Y C, Nakata K.Mater Des, 2009; 30: 469
[10] Bang H S, Bang H S, Song H J, Joo S M.Mater Des, 2013; 51: 544
[11] Yang D, Hodgson P, Wen C E.Intermetallics, 2009; 17: 727
[12] Lv S X, Huang Y X, Yang T, Shi J W, Jing X J.Rev Adv Mater Sci, 2013; 33: 396
[13] Liu C, Dong C L.Trans Nonferrous Met Soc China, 2014; 24: 1387
[14] Xiao G S, Yang X X, Yuan G Z, Li Z G, Shu X F.Mater Des, 2015; 88: 520
[15] Zhang Q K, Zhang Z F.Scr Mater, 2012; 67: 289
[16] Yamaguchi I.J Phys, 1981; 14E: 1270
[17] Peters W H, Ranson W F.Opt Eng, 1982; 21: 427
[18] Saranath K M, Ramji M.Opt Laser Eng, 2015; 68: 222
[19] Cai Y L, Fu S H, Wang Y H, Tian C G, Gao Y, Cheng T, Zhang Q C.Acta Metall Sin, 2014; 50: 1491
[19] (蔡玉龙, 符师桦, 王玉辉, 田成刚, 高越, 程腾, 张青川. 金属学报, 2014; 50: 1491)
[20] Chen J L, Zhan N, Zhang X C, Wang J X.Opt Laser Eng, 2015; 65: 103
[21] Morgeneyer T F, Helfen L, Mubarak H, Hild F.Exp Mech, 2013; 53: 543
[22] Lee H, Kim C, Song J H.Materials, 2015; 8: 8424
[23] He Y M, Sun Y, Zhang J, Li X D.J Eur Ceram Soc, 2013; 33: 157
[24] Lei M K, Xu Z C, Yang F J, Gao F.Acta Metall Sin, 2004; 40: 1104
[24] (雷明凯, 徐忠成, 杨辅军, 高峰. 金属学报, 2004; 40: 1104)
[25] Yang Q S, Yang W.Acta Mecha Sin, 1997; 29: 355
[25] (杨庆生, 杨卫. 力学学报, 1997; 29: 355)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[8] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[11] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[12] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[14] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[15] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
No Suggested Reading articles found!