Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1423-1431    DOI: 10.11900/0412.1961.2016.00084
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND PROPERTIES OF Ni-BASEDWEAR RESISTANT LAYERS REINFORCED BYTiC GENERATED FROM IN SITU PLASMASPRAY WELDING
Hongyong XU1,Wenquan WANG1,Shiming HUANG2,Xiangxia CHENG3,Meixuan REN4
1 Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China
2 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
3 School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
4 School of Electrical Engineering, Northeast Dianli University, Jilin 132012, China
Cite this article: 

Hongyong XU,Wenquan WANG,Shiming HUANG,Xiangxia CHENG,Meixuan REN. MICROSTRUCTURES AND PROPERTIES OF Ni-BASEDWEAR RESISTANT LAYERS REINFORCED BYTiC GENERATED FROM IN SITU PLASMASPRAY WELDING. Acta Metall Sin, 2016, 52(11): 1423-1431.

Download:  HTML  PDF(2115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Generally, wear is one of the main failure mechanisms for mold steel. The heavy financial loss will often occur if molds are out of service due to their hard manufacturing process and high cost of metal materials. Therefore, mold repairing is urgent and critical if they fail to function. Ni-matrix wear resistant composited layers reinforced by TiC generated from in situ plasma spray welding NiCrBSi+Ti powders were prepared. The analysis instruments of OM, SEM, XRD and EDS were used to study the microstructural characterization, phase identification and chemical compositions of the layers. And the microhardness and wear resistance were tested using Vickers hardness tester and abrasion tester, respectively. The investigations demonstrated that the layers were mainly composed of basic phases (γ-Ni+β1-Ni3Si) with eutectic features and hypereutectoid (α-Fe+FeNi3) structures, in which hard phases M7C3 and M23C6 were embedded in the matrix. The phase CrB was distributed uniformly in the layers. One part of TiC generated from in situ reaction acted as the nucleation of the chromium compounds precipitates M7C3 and M23C6. The other part of TiC was also distributed in the base with the fine particles (<1 μm) and even bigger size (>1 μm). Ti percentage rising, the microstructures of plasma spray welding layers were refined and the phase M23C6 increased while M7C3 decreased. When the Ti addition reached 6%, the layers had better performance with microhardness of 800 HV0.5. The wear mass loss of layers was 14.5 mg, which were more than 2 times of NiCrBSi layer.

Key words:  TiC,      plasma      spray      welding,      in      situ      generation,      microstructure      and      property     
Received:  11 March 2016     
Fund: Supported by Science and Technology Department of Jilin Province (No.20100328)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00084     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1423

Fig.1  SEM images and EDS analyses of NiCrBSi (a) and Ti (b) powders
Point Atomic fraction / % Phase
C Cr Ni Fe Si
A 30.96 36.38 3.88 28.32 0.46 (Cr, Fe)7C3
B 13.51 32.82 9.22 43.51 0.94 (Fe, Cr)23C6
C 10.17 83.93 1.06 4.85 - Cr23C6
D 37.71 39.24 7.10 15.95 - (Cr, Fe)7C3
E 26.71 66.62 - 6.67 - Cr7C3
F 2.57 4.73 59.53 24.96 8.32 FeNi3
G 6.32 3.36 63.33 10.31 16.68 (γ-Ni+β1-Ni3Si)
Table 1  EDS analyses of different points in Fig.3
Fig.2  XRD spectra of NiCrBSi powders (a) and No.1 surfacing layer (b)
Fig.3  SEM images and EDS analyses of No.1 surfacing layer (a) SEM image of interface (b) EDS analysis along the line in Fig.3a(c) SEM image of middle (d) EDS mapping analyses of Fig.3c
Fig.4  XRD spectra of No.2~No.6 surfacing layers
Point Atomic fraction / % Phase
C Ti Cr Ni Fe Si Mo V
H 25.54 1.03 4.63 9.33 55.28 2.93 0.61 0.65 α-Fe
I 13.37 0.42 28.27 10.90 47.04 - - - (Fe, Cr)23C6
J 32.32 0.51 23.20 5.54 38.43 - - - (Fe, Cr)7C3
K 18.59 4.87 67.51 4.54 4.48 - - - Cr23C6
L 11.75 2.67 5.24 43.78 29.63 6.93 - - (α-Fe+FeNi3)
M 8.69 3.56 3.42 50.03 16.25 18.05 - - (γ-Ni+β1-Ni3Si)
N 29.37 53.35 5.43 6.82 5.03 - - - TiC
Table 2  EDS analyses of different points in Fig.5
Fig.5  SEM images and EDS analyses of No.2 surfacing layer(a) SEM image of interface (b) SEM image of bottom(c) SEM image and Ti EDS mapping analysis (inset) of middle(d) SEM image and Ti EDS mapping analysis (inset) of top(e) partial magnification SEM image and Ti EDS mapping analysis (inset) of top layer(f) EDS of point N in Fig.5e
Fig.6  SEM image of No.4 surfacing layer (a) and EDS analyses along line in Fig.6a (b)
Fig.7  SEM images and EDS mapping analyses (insets) of No.3 (a), No.4 (b), No.5 (c) and No.6 (d) surfacing layers in the middle
Fig.8  Microhardness (a) and wear mass loss (b) of different surfacing layers
Fig.9  Microstructures of substrate material H13 (a) and No.1 (b), No.3 (c) and No.6 (d) surfacing layers after wear test
[1] Kulkarni K, Srivastava A, Shivpuri R, Bhattacharya R, Dixit S, Bhat D.Surf Coat Technol, 2002; 149: 171
[2] Srivastava A, Joshi V, Shivpuri R.Wear, 2004; 256: 38
[3] Jacobsen S D, Hinrichs R, Baumvol I J R, Castellano G, Vasconcellos M A Z.Surf Coat Technol, 2015; 270: 266
[4] Lei Y W, Sun R L, Tang Y, Niu W.Opt Laser Eng, 2015; 66: 181
[5] Wang D, Li H, Yang H, Ma J, Li G.Chin J Aeronaut, 2014; 27: 1002
[6] Telasang G, Majumdar J D, Padmanabham G, Manna I.Surf Coat Technol, 2015; 261: 69
[7] Hou Q Y, Gao J S, Zhou F.Surf Coat Technol, 2005; 194: 238
[8] Cho T Y, Yoon J H, Cho J Y, Joo Y K, Kang J H, Zhang S H, Chun H G, Hwang S Y, Kwon S C.Surf Coat Technol, 2009; 203: 3250
[9] Xu H Y, Wang W Q, Huang S M, Fang L Q.Trans Mater Heat Treat, 2015; 36: 221
[9] (徐红勇, 王文权, 黄诗铭, 方丽琴. 材料热处理学报, 2015; 36: 221)
[10] Ingo G M, Kaciulis S, Mezzi A, Valente T, Casadei F, Gusmano G. Electrochim Acta, 2005; 50: 4531
[11] Xiao L S, Yan D R, He J N, Lin Z, Dong Y C, Zhang J X, Li X Z.Appl Surf Sci, 2007; 253: 7535
[12] Mao Z P, Wang J, Sun B D, Yao C W.J Therm Spray Technol, 2009; 18: 563
[13] Borgioli F, Galvanetto E, Galliano F P, Bacci T.Wear, 2006; 260: 832
[14] Rosu R A, Serban V A, Bucur A I, Dragos U.Appl Surf Sci, 2012; 258: 3871
[15] Shahien M, Yamada M, Yasui T, Fukumoto M.J Therm Spray Technol, 2011; 20: 580
[16] Liu H Y, Huang J H, Yin C F, Zhang J G, Lin G B.Ceram Int, 2007; 33: 827
[17] Shanmugavelayutham G, Yano S, Kobayashi A.Vacuum, 2006; 80: 1336
[18] Ye F X, Tsumura T, Nakata K, Ohmori A.Mater Sci Eng, 2008; B148: 154
[19] Culha O, Tekmen C, Toparli M, Tsunekawa Y.Mater Des, 2010; 31: 533
[20] Tekmen C, Ozdemir I, Fritsche G, Tsunekawa Y.Surf Coat Technol, 2009; 203: 2046
[21] Sahu J K, Sahoo C K, Masanta M.Mater Manuf Process, 2015; 30: 736
[22] Isalgue A, Fernandez J, Cinca N, Villa M, Guilemany J M.J Alloys Compd, 2013; 577: S277
[23] Wang W F, Wang M C, Sun F J.Heat Treat Met, 2009; 34(2): 65
[23] (王维夫, 王茂才, 孙凤久. 金属热处理, 2009; 34(2): 65)
[24] Liu L, Fu H Z, Shi Z X.Acta Metall Sin, 1989; 25: 48
[24] (刘林, 傅恒志, 史正兴. 金属学报, 1989; 25: 48)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[9] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[11] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[12] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[15] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
No Suggested Reading articles found!