Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1432-1440    DOI: 10.11900/0412.1961.2016.00052
Orginal Article Current Issue | Archive | Adv Search |
DEPOSITION MECHANISM OF Ni-W-Cu-P COATING AND ITS CORROSION BEHAVIOR IN ACID SOLUTION
Xinxian FANG1,2(),Yajun XUE1,Yuming DAI1,Zhangzhong WANG1,2
1 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
2 School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
Cite this article: 

Xinxian FANG,Yajun XUE,Yuming DAI,Zhangzhong WANG. DEPOSITION MECHANISM OF Ni-W-Cu-P COATING AND ITS CORROSION BEHAVIOR IN ACID SOLUTION. Acta Metall Sin, 2016, 52(11): 1432-1440.

Download:  HTML  PDF(1904KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The application of steel in acidic media faces a big challenge due to the corrosion problem. Quaternary Ni-W-Cu-P alloy act as a potential coating material applied to acidic media because of its superior corrosion resistance. However, mechanism of deposition and corrosion of Ni-W-Cu-P coating plated on the surface of steel component is rare in the previous studies. In this work, the Ni-W-Cu-P coatings were deposited onto carbon steel 65Mn substrates via electroless plating. The anti-corrosion properties of the coatings in room and warm acidic solution (20%H2SO4) were evaluated by dipping and electrochemical test, respectively. Their deposition mechanism, composition and structure were investigated using SEM, EDS and XRD, respectively. The results show that the Ni-W-Cu-P coating is composed of spherical and block particles in the early stage of electroless plating, which are gradually transformed into spherical and strip cellular structure with the increasing electroless plating time. With prolonging electroless plating time, the Ni and W contents in the Ni-W-Cu-P coatings increase logarithmically and lineally, respectively. However, the Cu content decreases logarithmically, the P content reaches the maximum value after electroless plating for 60 min and then gradually decreases. The Ni-W-Cu-P coating is amorphous when it is annealed at low temperature, upon increasing the annealing temperature to over 400 ℃, it gradually transforms from amorphous to crystalline. The thermal stability of Ni-W-Cu-P coating can be significantly improved by co-depositing tungsten and copper element. Corrosion resistance of the amorphous coating annealed at 400 ℃ is better than that of amorphous coating as-plated and nanometer crystalline coating annealed at 500 ℃ in both room and warm acid solution. As-plated coatings and those annealed at 400 ℃ are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 500 ℃. With increasing the corrosion time, the corrosion rates and corrosion current densities of the Ni-W-Cu-P coatings increase, however, their impedance values decrease.

Key words:  Ni-W-Cu-P      coating,      deposition      mechanism,      acidic      corrosion      medium,      corrosion      mechanism,      impedance      spectrum     
Received:  01 February 2016     
Fund: Supported by National Natural Science Foundation of China (No.51301088), Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (No.ASMA201414) and Innovation Fund Key Project of Nanjing Institute of Technology (No.CKJA201202)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00052     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1432

Fig.1  SEM images of Ni-W-Cu-P coatings after plating for different times

(a) 1 min (b) 5 min (c) 10 min (d) 20 min (e) 30 min (f) 120 min

Zone Ni W Cu P Fe
A 9.18 1.83 4.56 1.17 83.26
B 18.99 1.11 11.14 2.31 66.45
C 10.67 2.98 5.93 1.50 78.92
D 26.54 7.32 14.85 3.59 47.70
F 57.43 6.04 20.74 3.49 12.30
G 55.18 4.75 19.63 6.37 14.07
H 61.18 6.74 19.78 7.67 4.63
I 63.64 4.94 19.49 6.41 5.52
Table 1  EDS results of different characteristic zones of Ni-W-Cu-P coating in Fig.1 (mass fraction / %)
Fig.2  Variation of chemical composition of Ni-W-Cu-P coatings with plating time
Fig.3  XRD spectra of Ni-W-Cu-P coatings annealed at different temperatures
Fig.4  Variation of corrosion rate (v) of Ni-W-Cu-P coatings annealed at different temperatures with dipping time
Structure Ni W Cu P O
NP 74.58 10.04 8.48 6.90 -
M 71.40 11.60 10.06 6.94 -
WCS 80.14 6.32 3.91 7.21 2.42
GCS 74.55 12.03 6.32 7.10 0.00
CS 75.30 10.62 4.17 4.40 5.51
WS 77.17 8.66 3.82 4.35 6.00
GS 72.56 13.26 6.60 7.58 0.00
Table 2  EDS results of different structures in corroded samples surface in Fig.5 (mass fraction / %)
Fig.5  Surface morphologies of Ni-W-Cu-P coatings after corroded for different times (Insets show high magnified images) (a) as-plated, 19.5 h (b) annealed at 400 ℃, 25.5 h (c) annealed at 500 ℃, 19.5 h (d) annealed at 500 ℃, 44.5 h
Fig.6  Polarization curves of Ni-W-Cu-P coatings as-plated (a), annealed at 400 ℃ (b) and at 500 ℃ (c) (E—potential, icorr—current density)
Fig.7  Bode plots for as-plated Ni-W-Cu-P coatings (a), and then annealed at 400 ℃ (b) and 500 ℃ (c), and variation of their impedance values (|Z|) with corrosion time (d)
Coating 0 h 34 h 56 h 80 h 152 h 224 h
As-plated 0.88 4.07 30.28 62.10 77.10 463.10
Annealed at 400 ℃ 1.17 1.39 1.57 1.63 2.31 2.17
Annealed at 500 ℃ 0.71 0.72 2.57 3.54 292.90 1040.00
Table 3  Corrosion current density of Ni-W-Cu-P coatings corroded in 20%H2SO4 solution for different times (10-5 Acm-2)
Fig.8  SEM images of Ni-W-Cu-P coatings after corroding for 224 h (a) as-plated (b, c) annealed at 400 ℃ (d) annealed at 500 ℃
Zone Ni W Cu P O Fe S
A 37.03 18.87 8.38 15.59 12.53 7.60 -
B 30.51 24.63 13.27 13.99 10.30 2.04 5.26
C 58.04 14.45 4.88 11.37 7.90 3.36 -
D 71.78 4.78 7.73 11.26 3.41 1.04 -
E 68.75 7.42 7.03 11.55 4.43 0.82 -
Table 4  EDS results of different characteristic zones of corroded samples surface in Fig.8 (A—corrosion film in Fig.8a) (mass fraction / %)
[1] Fang X X, Zhen R, Xue Y J, Wang Z Z.Chin J Mater Res, 2011; 25: 172
[1] (方信贤, 甄睿, 薛亚军, 王章忠. 材料研究学报, 2011; 25: 172)
[2] Fang X X, Ba Z X, Zhen R, Wang Z Z.Trans Mater Treat, 2014; 35: 180
[2] (方信贤, 巴志新, 甄睿, 王章忠. 材料热处理学报, 2014; 35: 180)
[3] Abdel Salam H, Shoeib M A, Hady H, Abdel Salam O F.Surf Coat Technol, 2007; 202: 162
[4] Nalaraju J B, Ezhil Selvi V, William Grips V K, Rajam K S.Electrochim Acta, 2006; 52: 1064
[5] Song J F, Guo K M, Zhao Z H.Chin J Nonferrous Met, 1998; 8: 379
[5] (宋锦福, 郭凯铭, 赵子辉. 中国有色金属学报, 1998; 8: 379)
[6] Gao Y, Zheng Z J, Zhu M, Lu C P.Mater Sci Eng, 2004; A381: 98
[7] Tien S K, Duh J G. Thin Solid Films#/magtechI#, 2004; 469-170: 268
[8] Balaraju J N, Millath Jahan S, Rajam K S.Surf Coat Technol, 2006; 201: 507
[9] Palaniappa M, Seshadri S K.Wear, 2008; 265: 735
[10] He F J, Fang Y Z, Jin S J.Wear, 2014; 311: 14
[11] Palaniappa M, Seshadri S K. Mater Sci Eng#/magtechI#, 2007; A460-461: 638
[12] He S Z, Huang X M, Zheng H M, Li P, Lin Z P, Shan C L.Tribology, 2009; 29: 362
[12] (何素珍, 黄新民, 郑华明, 李鹏, 林志平, 单传丽. 摩擦学学报, 2009; 29: 362)
[13] Fang X X, Bai Y Q, Wang Z Z.Acta Metall Sin, 2010; 46: 239
[13] (方信贤, 白允强, 王章忠. 金属学报, 2010; 46: 239)
[14] Liu G C, Yang L J, Wang L D, Wang S L, Liu C Y, Wang J.Surf Coat Technol, 2010; 204: 3382
[15] Balaraju J N, Rajam K S.Surf Coat Technol, 2005; 195: 154
[16] Nee C C, Weil R.Surf Technol, 1985; 25: 7
[17] Balaraju J N, Kalavati, Rajam K S.Surf Coat Technol, 2010; 205: 575
[18] Fang X X, Zhou H Z, Xue Y J.Trans Nonferrous Met Soc China, 2015; 25: 2594
[19] He S Z, Huang X M.Trans Mater Treat, 2010; 31: 133
[19] (何素珍, 黄新民. 材料热处理学报, 2010; 31: 133)
[20] Liu H, Guo R X, Li S, Zong Y, He B Q.Chin J Nonferrous Met, 2011; 21: 1936
[20] (刘宏, 郭荣新, 李莎, 宗云, 何冰清. 中国有色金属学报, 2011; 21: 1936)
[21] Liu H, Guo R X, Liu Y, Thompson G E, Liu Z.Surf Coat Technol, 2012; 206: 3350
[22] Liu H, Viejo F, Guo R X, Glenday S, Liu S.Surf Coat Technol, 2010; 204: 1549
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[10] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[11] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[15] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
No Suggested Reading articles found!