Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1477-1483    DOI: 10.11900/0412.1961.2016.00073
Orginal Article Current Issue | Archive | Adv Search |
HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY
Qingjuan WANG(),Xiao ZHOU,Bo LIANG,Ying ZHOU
School of Metallurgical and Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
Cite this article: 

Qingjuan WANG,Xiao ZHOU,Bo LIANG,Ying ZHOU. HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY. Acta Metall Sin, 2016, 52(11): 1477-1483.

Download:  HTML  PDF(1331KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-Cr-Zr alloy usually applys to the complex environment at high temperature. The mechanical behaviors of alloy are different from the condition of normal temperature. At high temperature, grains and precipitates of ultra-fine grain Cu-Cr-Zr alloy become coarse and it would affect the hot deformation behavior of alloy. To solve the thermal stability of the ultra-fine grain materials, the grain growth mechanism and the driving force of ultra-fine grain materials must be studied, as well as trace elements on the thermal stability mechanism. Tensile properties, microstructure of fracture and fracture mechanism of ultra-fine grain (UFG) Cu-Cr-Zr alloy made by two different treatment methods were studied at the temperature range of room temperature to 600 ℃. The results show that the ultimate tensile strength (UTS) of alloys decreases with increasing temperature. The UTS and elongation of No.1 alloys are about 577.17 MPa and 14.6% at room temperature, respectively. And No.1 alloy start to occur dynamic recrystallization and UTS decreases fast at 300 ℃. The UTS of No.1 alloy are only 59.12 MPa at 600 ℃. The UTS and elongation of No.2 alloy are about 636.71 MPa and 12.1% at room temperature, respectively. The pinning effect by precipitation on grain boundary in the No.2 alloy begins to weaken at 400 ℃. The UTS of No.2 alloy decreases fast and are only 65.20 MPa at 600 ℃. Compared to No.1 alloy, No.2 alloy have better room temperature property and thermal stability. The elongation of all alloys increases with increasing temperature and show superplasticity on elevated temperature. The high temperature tensile fracture morphologies are an intense and deep dimple pattern. The high temperature fracture mechanism is ductile fracture by gathered microporous.

Key words:  Cu-Cr-Zr      alloy,      ultra-fine      grain,      high      temperature      tension,      fracture      mechanism     
Received:  04 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51104113)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00073     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1477

Fig.1  OM images of Cu-Cr-Zr alloy by two different equal channel angular pressing (ECAP) and ageing treatment

(a) specimen No.1 (4 passes ECAP+ageing+4 passes ECAP) (b) specimen No.2 (8 passes ECAP+ageing)

Fig.2  Microstructures of Cu-Cr-Zr alloy after tensile deformation at 400 ℃

(a) specimen No.1 (b) specimen No.2

Fig.3  Tensile stress-strain curves of Cu-Cr-Zr alloy by two different ECAP and ageing treatment
Fig.4  Tensile strength (σb) and elongation (δ) of Cu-Cr-Zr alloy as a function of temperature (T) by two different ECAP and ageing treatment
Fig.5  Low (a~c) and high magnified (d~f) SEM images for fracture morphologies of specimen No.1 at 20 ℃ (a, d), 300 ℃ (b, e) and 600 ℃ (c, f)
Fig.6  SEM images for fracture morphologies of specimen No.2 at 20 ℃ (a), 300 ℃ (b), 400 ℃ (c) and 600 ℃ (d)
[1] Zhang Y, Li R Q, Xu Q Q, Tian B H, Liu Y, Liu P, Chen X H.Chin J Nonferrous Met, 2014; 24: 745
[1] (张毅, 李瑞卿, 许倩倩, 田保红, 刘勇, 刘平, 陈小红. 中国有色金属学报, 2014; 24: 745 )
[2] Pan Z Y, Chen J B, Li J F.Trans Nonferrous Met Soc China, 2015; 25: 1206
[3] Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114
[4] Huang F X, Ma J S, Geng Z T, Ning H L, Lingmu Y F, Guo S M, Yu X T, Wang T, Li H, Li X C.Rare Met Mater Eng, 2004; 33: 267
[4] (黄福祥, 马莒生, 耿志挺, 宁洪龙, 铃木洋夫, 郭淑梅, 余雪涛, 王涛, 李红, 李鑫成. 稀有金属材料与工程, 2004; 33: 267)
[5] Huang F X, Ma J S, Ning H L.Scr Mater, 2003; 48: 97
[6] Correia J B, Davies H A, Sellars C M.Acta Mater, 1997; 45: 177
[7] Hatakeyama M, Toyama T, Yang J. J Nucl Mater#/magtechI#, 2009; 386-388: 852
[8] Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov V I.Acta Mater, 2002; 50: 1639
[9] Segal V M, Reznikov V I, Drobyshevskiy A E.Russian Metall (Eng Trans), 1981; 1: 99
[10] Xie H F, Mi X J, Huang G J, Gao B D, Yin X Q, Li Y F.Rare Met Mater Eng, 2012; 41: 1549
[10] (解浩峰, 米绪军, 黄国杰, 高宝东, 尹向前, 李艳锋. 稀有金属材料与工程, 2012; 41: 1549)
[11] Song D, Ma A B, Jiang J H, Lin P H, Yang D H.Trans Nonferrous Met Soc China, 2009; 19: 1065
[12] Abib K, Balanos J A M, Alili B, Bradai D.Mater Charact, 2016; 112: 252
[13] Zha M, Li Y J, Mathiesen R, Bjorge R, Roven H V.Trans Nonferrous Met Soc China, 2014; 24: 2301
[14] Zhang Y, Volinsky A A, Tran T H, Chai Z, Liu P, Tian B H, Liu Y.Mater Sci Eng, 2016; A650: 248
[15] Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114
[16] Saray O.Mater Sci Eng, 2016; A656: 120
[17] Leon K V, Munoz-Morris M A, Morris D G.Mater Sci Eng, 2012; A536: 181
[18] Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35
[19] Zhu Y T, Lowc T C.Mater Sci Eng, 2000; A291: 46
[20] Mishra R S, Valiev R Z, McFadden S X, Islamgaliev R K, Mukherjee A K.Scr Mater, 1999; 40: 1151
[21] Shen Y F, Guan R G, Zhao Z Y, Misra R D K.Acta Mater, 2015; 100: 247
[22] Cheng J Y, Shen B, Yu F X.Mater Charact, 2013; 81: 68
[23] Su J H, Dong Q M, Liu P, Li H J, Kang B X.Mater Sci Technol, 2003; 19: 529
[24] Wang Z C, Wang W L, Luo S, Zhu M Y.Chin J Nonferrous Met, 2014; 24: 115
[24] (王志成, 王卫领, 罗森, 朱苗勇. 中国有色金属学报, 2014; 24: 115)
[25] Zhang J S.High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 28
[25] (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 28)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[9] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[11] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[12] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[14] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[15] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
No Suggested Reading articles found!