Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (1): 75-88    DOI: 10.11900/0412.1961.2021.00041
Research paper Current Issue | Archive | Adv Search |
High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys
WANG Guanjie1,2, LI Kaiqi1,2, PENG Liyu1,2, ZHANG Yiming1,2, ZHOU Jian1,2, SUN Zhimei1,2()
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2. Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
Cite this article: 

WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys. Acta Metall Sin, 2022, 58(1): 75-88.

Download:  HTML  PDF(2997KB) 
Export:  BibTeX | EndNote (RIS)      

The development of novel materials has experienced three paradigms: purely empirical, theoretical models, and computational materials science. Currently, the huge amount of data generated by experiments and simulations has facilitated a shift in materials science to a data-driven fourth paradigm. Therefore, the development of high-throughput automatic integrated computations and data mining algorithms based on material databases and artificial intelligence algorithms is critical for accelerating the design of novel materials. This paper presents an open-source distributed computational platform called Artificial Learning and Knowledge Enhanced Materials Informatics Engineering 2.0 (ALKEMIE2.0) based on the AMDIV (automation-modular-database-intelligence-visualization) design concepts. The ALKEMIE2.0 platform includes five core components of automation, modular, materials database, artificial intelligence, and visualization, which are suitable for the computational design of novel materials. The overall characteristics of ALKEMIE2.0 are divided into five pillars. ALKEMIE-Core integrates multiscale calculations and simulation software using the ALKEMIE-Plugin application programming interface. Its high-throughput calculation workflows that support 104 magnitude concurrencies are implemented by integrating the automatic frameworks of model constructions, calculation workflows, and data analyses. Furthermore, the platform is based on the ALKEMIE-Server, which can easily and automatically open daemon services and realize information interactions in distributed supercomputers. With its strong portability and scalability, ALKEMIE has been deployed in the National Supercomputing Tianjin Center. In addition, the multitype materials database called the ALKEMIE-Data Vault contains structure, task, workflow, and material property databases, which combined with the power of supercomputing, enables the rapid application of artificial intelligence algorithms in the design of new materials. In particular, the many user-friendly interfaces, which were elaborately designed using the ALKEMIE-GUI and are suitable for scientists with broad backgrounds, make structural building, work flowcharts, data analysis, and machine learning models more transparent and maneuverable. Finally, the main features of ALKEMIE2.0 are demonstrated using two examples of multiplatform deployment and high-throughput screening of binary aluminum alloys.

Key words:  materials genome engineering      high-throughput calculation      materials database      artificial intelligence      multi-scale integrated simulation      high-throughput screening of binary aluminum alloy     
Received:  21 January 2021     
ZTFLH:  TB30  
Fund: National Key Research and Development Program of China(2017YFB0701700);National Natural Science Foundation of China(51872017);the High-Performance Computing (HPC) Resources at Beihang University
About author:  SUN Zhimei, professor, Tel: (010)82317747, E-mail:

URL:     OR

Fig.1  The AMDIV design philosophy of ALKEMIE2.0 platform (ALKEMIE—Artificial Learning and Knowledge Enhanced Materials Informatics Engineering, DB—database, ML—machine learning)
Fig.2  The architecture of ALKEMIE2.0 (GUI—graphical user interface, SSH—secure shell, AI—artificial intelligence, DOS—density of state, DFT—discrete Fourier transform, I/O—imput and output)
Fig.3  The outline of ALKEMIE2.0 platform (AIMD—ab initio molecular dynamics, HT—high-throughput, TC WF—Curie temperature workflow)
Fig.4  The flowchart of high-throughput automatic calculation and error correction
Fig.5  The types of databases in ALKEMIE2.0-Data Vault
Fig.6  High-throughput screening of the thermodynamic stability of aluminum alloys
(a) illustration of the not calculated elements (gray), the energetically unstable (red), and stable elements (white) in Al, respectively
(b) the formation energy of the 81 alloying element
(c, d) the average bond length (c) and lattice constant (d) of the alloyed compounds (The dashed lines indicate the value of the pure Al)
Fig.7  High-throughput screening of mechanical properties and electrical conductivities of aluminum alloys (The dotted line represents the reference value corresponding to pure aluminum calculated by DFT)
(a) bulk modulus (b) shear modulus
(c) Young's modulus (d) conductivity of different alloying elements
1 Agrawal A , Choudhary A . Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
2 Holdren J P . Materials genome initiative for global competitiveness [R]. Washington, DC: Executive Office of the President of the United States, National Science and Technology Council, 2011
3 Lin L C , Berger A H , Martin R L , et al . In silico screening of carbon-capture materials [J]. Nat. Mater., 2012, 11: 633
4 Su Y J , Fu H D , Bai Y , et al . Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
宿彦京, 付华栋, 白 洋 等 . 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
5 Yang K S , Setyawan W , Wang S D , et al . A search model for topological insulators with high-throughput robustness descriptors [J]. Nat. Mater., 2012, 11: 614
6 Jain A , Ong S P , Hautier G , et al . Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
7 Ong S P , Richards W D , Jain A , et al . Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis [J]. Comput. Mater. Sci., 2013, 68: 314
8 Jain A , Ong S P , Chen W , et al . FireWorks: A dynamic workflow system designed for high-throughput applications [J]. Concurr. Comput., 2015, 27: 5037
9 Mathew K , Montoya J H , Faghaninia A , et al . Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows [J]. Comput. Mater. Sci., 2017, 139: 140
10 Supka A R , Lyons T E , Liyanage L , et al . AFLOWπ: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians [J]. Comput. Mater. Sci., 2017, 136: 76
11 Pizzi G , Cepellotti A , Sabatini R , et al . AiiDA: Automated interactive infrastructure and database for computational science [J]. Comput. Mater. Sci., 2016, 111: 218
12 Larsen A H , Mortensen J J , Blomqvist J , et al . The atomic simulation environment—A Python library for working with atoms [J]. J. Phys.: Condens. Matter, 2017, 29: 273002
13 Belsky A , Hellenbrandt M , Karen V L , et al . New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design [J]. Acta Cryst., 2002, 58B: 364
14 Quirós M , Gražulis S , Girdzijauskaitė S , et al . Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database [J]. J. Cheminform., 2018, 10: 23
15 Curtarolo S , Setyawan W , Wang S D , et al . AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
16 Kirklin S , Saal J E , Meredig B , et al . The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies [J]. npj Comput. Mater., 2015, 1: 15010
17 Draxl C , Scheffler M . The NOMAD laboratory: From data sharing to artificial intelligence [J]. J. Phys. Mater., 2019, 2: 036001
18 Pedregosa F , Varoquaux G , Gramfort A , et al . Scikit-learn: Machine learning in Python [J]. J. Mach. Learn. Res., 2011, 12: 2825
19 Abadi M, Agarwal A, Barham P, et al . TensorFlow: Large-scale machine learning on heterogeneous distributed systems [Z]. arXiv:1603.04467, 2016
20 Paszke A , Gross S , Massa F , et al . PyTorch: An imperative style, high-performance deep learning library [A]. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) [C]. Vancouver, Canada: Curran Associates, 2019: 32
21 Ouyang R H , Ahmetcik E , Carbogno C , et al . Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO [J]. J. Phys. Mater., 2019, 2: 024002
22 Gossett E , Toher C , Oses C , et al . AFLOW-ML: A RESTful API for machine-learning predictions of materials properties [J]. Comput. Mater. Sci., 2018, 152: 134
23 Ward L , Dunn A , Faghaninia A , et al . Matminer: An open source toolkit for materials data mining [J]. Comput. Mater. Sci., 2018, 152: 60
24 Wang G J , Peng L Y , Li K Q , et al . ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
25 Kingma D P, Ba J. Adam: A method for stochastic optimization [Z]. arXiv:1412.6980, 2014
26 Zhang C Y, Bengio S, Hardt M, et al . Understanding deep learning requires rethinking generalization [Z]. arXiv:1611.03530, 2016
27 Hunter J D . Matplotlib: A 2D graphics environment [J]. Comput. Sci. Eng., 2007, 9: 90
28 Kresse G , Hafner J . Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
29 Giannozzi P , Baroni S , Bonini N , et al . Quantum Espresso: A modular and open-source software project for quantum simulations of materials [J]. J. Phys.: Condens. Matter, 2009, 21: 395502
30 Huang Y D , Zhou J , Wang G J , et al . Abnormally strong electron-phonon scattering induced unprecedented reduction in lattice thermal conductivity of two-dimensional Nb2C [J]. J. Am. Chem. Soc., 2019, 141: 8503
31 Gonze X , Amadon B , Anglade P M , et al . ABINIT: First-principles approach to material and nanosystem properties [J]. Comput. Phys. Commun., 2009, 180: 2582
32 Plimpton S . Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
33 Tegeler M , Shchyglo O , Kamachali R D , et al . Parallel multiphase field simulations with OpenPhase [J]. Comput. Phys. Commun., 2017, 215: 173
34 Lukas H L , Fries S G , Sundman B . Computational Thermodynamics: The Calphad Method [M]. Cambridge: Cambridge University Press, 2007: 265
35 Otero-de-la-Roza A , Abbasi-Pérez D , Luaña V . Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Comput. Phys. Commun., 2011, 182: 2232
36 Morgan B J . Lattice-geometry effects in garnet solid electrolytes: A lattice-gas Monte Carlo simulation study [J]. Roy. Soc. Open Sci., 2017, 4: 170824
37 Sun Z M , Zhou J , Blomqvist A , et al . Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy [J]. Phys. Rev. Lett., 2009, 102: 075504
38 Cheng Y X , Zhu L G , Wang G J , et al . Vacancy formation energy and its connection with bonding environment in solid: A high-throughput calculation and machine learning study [J]. Comput. Mater. Sci., 2020, 183: 109803
39 Peng Q , Zhou J , Chen J T , et al . Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell [J]. J. Mater. Chem., 2019, 7A: 26062
40 Peng L Y , Li Z , Wang G J , et al . Reduction in thermal conductivity of Sb2Te phase-change material by scandium/yttrium doping [J]. J. Alloys Compd., 2020, 821: 153499
41 Kalinin S V , Sumpter B G , Archibald R K . Big-deep-smart data in imaging for guiding materials design [J]. Nat. Mater., 2015, 14: 973
42 Pan F S , Zhang D F , et al . Alumimum Alloy and Application [M]. Beijing: Chemical Industry Press, 2006: 155
潘复生, 张丁非 等 . 铝合金及应用 [M]. 北京: 化学工业出版社, 2006: 155
43 Guan R G , Luo H F , Huang H , et al . Development of aluminum alloy materials: Current status, trend, and prospects [J]. Strateg. Stud. CAE, 2020, 22(5): 68
管仁国, 娄花芬, 黄 晖 等 . 铝合金材料发展现状、趋势及展望 [J]. 中国工程科学, 2020, 22(5): 68
44 Madsen G K H , Singh D J . BoltzTraP. A code for calculating band-structure dependent quantities [J]. Comput. Phys. Commun., 2006, 175: 67
45 Wang G J , Zhou J , Elliott S R , et al . Role of carbon-rings in polycrystalline GeSb2Te4 phase-change material [J]. J. Alloys Compd., 2019, 782: 852
46 Wang G J , Zhou J , Sun Z M . First principles investigation on anomalous lattice shrinkage of W alloyed rock salt GeTe [J]. J. Phys. Chem. Solids, 2020, 137: 109220
47 Mouhat F , Coudert F X . Necessary and sufficient elastic stability conditions in various crystal systems [J]. Phys. Rev., 2014, 90B: 224104
48 Hill R . The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
49 Voigt W . Lehrbuch der Kristallphysik [M]. Leipzig: B. G. Teubner, 1928: 1
50 Guo X Q , Podloucky R , Freeman A J . First principles calculation of the elastic constants of intermetallic compounds: Metastable Al3Li [J]. J. Mater. Res., 1991, 6: 324
51 Chinmulgund M , Inturi R B , Barnard J A . Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films [J]. Thin Solid Films, 1995, 270: 260
52 Zhang D T , Li Y Y , Luo Z Q . A review on the progress of rapidly solidified hypereutectic Al-Si alloy materials [J]. Light Alloy Fabr. Technol., 2001, 29(2): 1
张大童, 李元元, 罗宗强 . 快速凝固过共晶铝硅合金材料的研究进展 [J]. 轻合金加工技术, 2001, 29(2): 1
53 Xiang Q C , Wang J Y , Zhou Z P , et al . Survey on the development and application of Al-Fe alloys [J]. Foundry, 2006, 55: 875
向青春, 王静媛, 周振平 等 . 铝铁合金的研究进展与应用状况 [J]. 铸造, 2006, 55: 875
54 Shackelford J F , Alexander W . CRC Materials Science and Engineering Handbook [M]. 3rd Ed., Boca Raton: CRC Press, 2000: 41
[1] SU Yanjing, FU Huadong, BAI Yang, JIANG Xue, XIE Jianxin. Progress in Materials Genome Engineering in China[J]. 金属学报, 2020, 56(10): 1313-1323.
No Suggested Reading articles found!