Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 1000-1008    DOI: 10.11900/0412.1961.2015.00643
Orginal Article Current Issue | Archive | Adv Search |
PHASE-FIELD MODELLING OF THE MARTENSITIC TRANSFORMATION IN SHAPE MEMORYALLOY Au30Cu25Zn45
Pengcheng SONG1,Wenbo LIU2,Lei CHEN3,Chi ZHANG1,Zhigang YANG1()
1 Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
2 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
3 Department of Mechanical Engineering, Mississippi State University, MS 39762, USA
Cite this article: 

Pengcheng SONG,Wenbo LIU,Lei CHEN,Chi ZHANG,Zhigang YANG. PHASE-FIELD MODELLING OF THE MARTENSITIC TRANSFORMATION IN SHAPE MEMORYALLOY Au30Cu25Zn45. Acta Metall Sin, 2016, 52(8): 1000-1008.

Download:  HTML  PDF(949KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Applications of shape memory alloys require them have the ability to undergo back and forth through the solid-to-solid martensitic phase transformations for many times without degradation of properties (termed “reversibility”). Low hysteresis and small migration of transformation temperature under cycling are the macroscopic manifestation of high reversibility. By the crystallographic theory of martensite, materials with certain crystalline symmetry and geometric compatibility tend to form no-stressed transformation interface and have exce-llent functional stability. In the theory, several conditions that corresponding to extremely low hysteresis are specified. Stronger compatibility conditions which lead to even better reversibility have been theoretically proposed, those conditions are called “cofactor conditions”. Recently, for the first time, experimental results find out the shape memory alloy Au30Cu25Zn45 that closely satisfy the cofactor conditions. Enhanced reversibility with thermal hysteresis of 2.045 ℃, and the unusual riverine microstructure are found in Au30Cu25Zn45. However, their studies are limited to crystallographic analysis, and haven't provided enough details of microstructural evolution in martensitic transformation. Furthermore, it is the evolution of microstructures that leads to an extremely low thermal hysteresis in this alloy. Thus, making clear of evolution of microstructures in martensitic transformation in this alloy is of great importance. So, in the present work, the phase field method was applied, in which the microstructure is described by Landau theory of martensitic transformation, Khachaturyan-Shatalov's phase field microelasticity theory, and thermodynamics gradient to study the microstructural evolution of martensitic transformation in Au30Cu25Zn45, trying to figure out pathway of formation of the unusual microstructure with satisfying cofactor conditions. The simulation results show that during the martensitic transformation, quad-junctions composed of four different variants are formed. These junctions grow layer by layer, and the previously formed layer has larger size, thus leading to the formation of the experimentally reported “riverine” microstructure of martensite in Au30Cu25Zn45. Further analysis based on the crystallographic theory of martensitic transformation shows that in Au30Cu25Zn45 6 groups of variants can form such kind of quad-junction, and each group of variants can form 4 kinds of type 1/type 2 twin pairs and two kinds of compound twin pairs. All of the quad-junctions in this transformation are composed of four of those 6 twin pairs in each variant group, and the twin walls of these four twin pairs are perpendicular to each other.

Key words:  phase-field model      quad-junction      twin variants pair      shape-memory alloy      martensitic transformation     
Received:  15 December 2015     
Fund: Supported by National Natural Science Foundation of China (No.51471094) and National Basic Research Program of China (Nos.2015GB118000 and 2015CB654802)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00643     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/1000

Variant Stretch tensor Variant Stretch tensor Variant Stretch tensor
U1 [1.05910.007300.00731.00150000.9363 U5 0.93630001.00150.007300.00731.0591 U9 1.001500.007300.936300.007301.0591
U2 1.0591-0.00730-0.00731.00150000.9363 U6 0.93630001.0015-0.00730-0.00731.0591 U10 1.00150-0.007300.93630-0.007301.0591
U3 1.00150.007300.00731.05910000.9363 U7 1.059100.007300.936300.007301.0015 U11 0.93630001.05910.007300.00731.0015
U4 1.0015-0.00730-0.00731.05910000.9363 U8 1.05910-0.007300.93630-0.007301.0015 U12 0.93630001.0591-0.00730-0.00731.0015
Table 1  Stretch tensor for each martensite variant in shape memory alloy Au30Cu25Zn45
Variant 2 3 4 5 6 7 8 9 10 11 12
1 C C N I / II I / II I / II I / II NM NM NM NM
2 N C I / II I / II I / II I / II NM NM NM NM
3 C NM NM NM NM I / II I / II I / II I / II
4 NM NM NM NM I / II I / II I / II I / II
5 C NM NM I / II I / II C C (N)
6 NM NM I / II I / II C (N) C
7 C C C (N) I / II I / II
8 C (N) C I / II I / II
9 C NM NM
10 NM NM
11 C
Table 2  Martensitic variant twin type classification in shape memory alloy Au30Cu25Zn45
Fig.1  Phase-field modelling of the microstructure evolution of martensitic transformation in shape memory alloy Au30Cu25Zn45 under computing steps of 4000 (a), 5000 (b), 7000 (c), 8000 (d), 9000 (e), 10000 (f) (Red circles in Figs.1c and d mark the riverine microstructures)
Fig.2  3D morphology evolutions of martensitic transformation in shape memory alloy Au30Cu25Zn45 under computing steps of 4000 (a), 5000 (b), 10000 (c), magnifications of quad-junction marked by red circles in Figs.2a and b (d) and Fig.2c (e), as shown by those arrows
Fig.3  Growth of quad-junction composed of variants 1~4 under computing steps of 100 (a), 2000 (b), 3000 (c1, c2) (Figs.3c1 and c2 corresponding to the simulation results of the same computing step with different view directions)
[1] Yintao S, Xian C, Vivekanand D, Thomas W S, James R D.Nature, 2013; 502: 85
[2] Walia H, Brantley W A, Gerstein H.J Endod, 1988; 14: 950
[3] Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch M O.Nature Mater, 2012; 11: 620
[4] Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Ma?osa L D, Mathur N.Adv Mater, 2013; 25: 1360
[5] Srivastava V, Song Y, Bhatti K, James R D.Adv Energy Mater, 2011; 1: 97
[6] Kato H, Ozu T, Hashimoto S, Miura S.Mater Sci Eng, 1999; A264: 245
[7] Cui J, Chu Y S, Famodu O O, Furuya Y, Hattrick-Simpers J, James R D, Ludwig A, Thienhaus S, Wuttig M, Zhang Z Y, Takeuchi I.Nature Mater, 2006; 5: 286
[8] Zarnetta R, Takahashi R, Young M L, Savan A, Furuya Y, Thienhaus S, Maa? B, Rahim M, Frenzel J, Brunken H, Chu Y S, Srivastava V, James R D, Takeuchi I, Eggeler G, Ludwig A.Adv Funct Mater, 2010; 20: 1917
[9] Bechtold C, Chluba C, de Miranda R L, Quandt EAppl Phys Lett, 2012; 101: 091903
[10] Zhang Z, James R D, Muller S.Acta Mater, 2009; 57: 4332
[11] Delville R, Kasinathan S, Zhang Z Y, Humbeeck J V, James R D, Schryvers D.Phil Mag, 2010; 90: 177
[12] Srivastava V, Chen X, James R D.Appl Phys Lett, 2010; 97: 014101
[13] Ball J M, James R D.Arch Ration Mech Anal, 1987; 100: 13
[14] Chen X, Srivastava V, Dabade V, James R D.J Mech Phys Solids, 2013; 61: 2566
[15] Chluba C, Ge W W, Miranda R L, Strobel J, Kienle L, Quandt E, Wuttig M.Science, 2015; 348: 1004
[16] Militzer M.Current Opin Solid State Mater Sci, 2011; 15: 106
[17] Artemev A, Yi W, Khatchaturyan A G.Acta Mater, 2000; 48: 2503
[18] Artemev A, Jin Y, Khatchaturyan A G.Acta Mater, 2001; 49: 1165
[19] Artemev A, Jin Y, Khatchaturyan A G.Phil Mag, 2002; 82A: 1249
[20] Gao Y, Zhou N, Wang D, Wang Y.Acta Mater, 2014; 68: 93
[21] Tadaki T, Okazaki H, Yoshiyuki N, Shimizu K.Mater Trans JIM, 1990; 31: 935
[22] Tadaki T, Okazaki H, Yoshiyuki N, Shimizu K.Mater Trans JIM, 1990; 31: 941
[23] Salje E.Ferroelectrics, 1990; 104: 111
[24] Khachaturyan A G.Theory of Structural Transformations in Solids. New York: Wiley-Interscience, 1983: 157
[25] Cahn J W, Hilliard J E.J Chem Phys, 1958; 28: 258
[26] Hillert M.Acta Metall, 1961; 9: 525
[27] Bhattacharya K.Microstructure of Martensite. Cambridge: Oxford University Press, 2003: 66
[28] Lieberman D S, Wechsler M S, Read T A.J Appl Phys, 1955; 26: 473
[29] Bowles J S, Mackenzie J K.Acta Metall, 1954; 2: 129
[30] Bowles J S, Mackenzie J K.Acta Metall, 1954; 2: 138
[31] Chen L Q.Annu Rev Mater Res, 2002; 32: 113
[32] Ji Y Z, Issa A, Heo T W, Saal J E, Wolverton C, Chen L Q.Acta Mater, 2014; 76: 259
[33] Wang Y, Khachaturyan A G.Acta Mater, 1997; 45: 759
[34] Wang Y Z, Khachaturyan A G.Mater Sci Eng, 2006; A438: 55
[35] Olson G B.Mater Sci Eng, 1999; A273:11
[36] Chu Y A, Moran B, Reid A C E.Metall Mater Trans, 2000; 31A: 1321
[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[3] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[6] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[8] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[9] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[10] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[11] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[12] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[13] Xue WANG,Lei HU,Dongxu CHEN,Songtao SUN,Liquan LI. Effect of Martensitic Transformation on Stress Evolution in Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. 金属学报, 2017, 53(7): 888-896.
[14] Kejian LI,Zhipeng CAI,Yao WU,Jiluan PAN. Research on Austenite Transformation of FB2 Heat-Resistant Steel During Welding Heating Process[J]. 金属学报, 2017, 53(7): 778-788.
[15] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
No Suggested Reading articles found!