Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 1009-1016    DOI: 10.11900/0412.1961.2015.00541
Orginal Article Current Issue | Archive | Adv Search |
APPLICATION OF PRAGMATIC NUMERICAL INVERSE METHOD IN COMPUTATION OF INTERDIFFUSION COEFFICIENTS IN Al TERNARY ALLOYS
Yuanrong LIU,Weimin CHEN,Ying TANG,Yong DU,Lijun ZHANG()
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, China
Cite this article: 

Yuanrong LIU,Weimin CHEN,Ying TANG,Yong DU,Lijun ZHANG. APPLICATION OF PRAGMATIC NUMERICAL INVERSE METHOD IN COMPUTATION OF INTERDIFFUSION COEFFICIENTS IN Al TERNARY ALLOYS. Acta Metall Sin, 2016, 52(8): 1009-1016.

Download:  HTML  PDF(1091KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to excellent mechanical properties, Al alloys are widely used in aerospace, automotive and civil industry. In order to optimize the properties and performance of the currently used Al alloys and/or even design novel Al alloys, the quantitative description of the microstructure during alloys preparation is the key. In recent years, the phase-field simulation coupling with the CALPHAD thermodynamic and atomic mobility databases has become an effective way to quantitatively simulate the microstructure evolution. So far, the accurate thermodynamic database for Al alloys has been established. However, it is not the case for atomic mobility database for Al alloys. The major obstacle lies in the lack of reliable diffusion coefficients in ternary and higher-order Al alloys, and thus there is an urgent need to remedy this situation. In this work, several semi-infinite and finite (thin film) single-phase solid-state diffusion couples in bcc Al-Fe-Mn and fcc Al-Cu-Ni alloys were first prepared. The concentration profiles for all the diffusion couples were then measured by means of EPMA. After that, the pragmatic numerical inverse method, which has been recently developed for high-throughput determination of the interdiffusion coeffi cients in ternary system and validated in several systems, was employed to compute the composition-dependent interdiffusivities in the corresponding systems at 1273 K. In order to eliminate the possibility that different interdiffusivities at the same composition would be obtained from different sets of diffusion couples, only one set of adjustable parameters was used for one system. All the obtained interdiffusivities satisfy the thermodynamic constrains. On the basis of the determined interdiffusivities as well as Fick's second law, all the experimental concentration profiles were reproduced nicely via numerical simulation, which verifies the reliability of the determined interdiffusivities. The further analysis indicates that the pragmatic numerical inverse method can not only realize the determination of reliable composition-dependent interdiffusion coefficients in ternary diffusion couples, but also cover the cases which cannot be dealt with by the traditional Matano-Kirkaldy method, such as the diffusion couples without intersection along their diffusion paths, and the finite (thin film) diffusion couples. In addition, the comparison between the interdiffusivities from semi-infinite diffusion couples and those from finite (thin film) diffusion couples was made, and the probable reason for their difference was also pointed out. All the presently obtained interdiffusivities in bcc Al-Fe-Mn and fcc Al-Cu-Ni alloys will be utilized to develop the accurate atomic mobility databases in ternary Al-Fe-Mn and Al-Cu-Ni systems in the next step.

Key words:  Al alloy      diffusion      interdiffusion coefficient      numerical inverse method     
Received:  21 October 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51301208 and 51474239), Natural Science Foundation of Hunan Province (No.2015JJ3146) and Project of State Key Laboratory of Powder Metallurgy, Central South University

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00541     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/1009

Sample No. Atomic fraction / % TA / K tA / h
C1 Fe-23.0Al-2.9Mn/Fe-12.6Al-13.8Mn 1273 48
C2 Fe-20.0Al-11.2Mn/Fe-19.1Al-1.4Mn 1273 49
K1 Cu-6.5Al-11.7Ni/Cu-2.5Al-10.1Ni 1273 48
K2 Cu-0.2Ni/Cu-1.2Al-21.9Ni 1273 48
K3 Cu-9.5Al/Cu-10.4Ni 1273 32
Table 1  Experimental conditions for diffusion couples in bcc Al-Fe-Mn and fcc Al-Cu-Ni alloys
Fig.1  Comparison between simulated and experimental concentration profiles of bcc structured Al-Fe-Mn diffusion couples C1 (a) and C2 (b) at 1273 K
Fig.2  Four kinds of composition-dependent interdiffusivities of bcc structured Al-Fe-Mn alloys determined by the pragmatic numerical inverse method at 1273 K
Fig.3  Diffusion paths of two fcc structured Al-Cu-Ni semi-infinite diffusion couples at 1273 K
Fig.4  Comparison between simulated and experimental concentration profiles of fcc structured Al-Cu-Ni semi-infinite diffusion couples K1 (a) and K2 (b) at 1273 K
Fig.5  Composition-dependent interdiffusivities D?AlAlCu (a), D?AlNiCu (b), D?NiAlCu (c) and D?NiNiCu (d) of fcc structured Al-Cu-Ni alloys determined by the pragmatic numerical inverse method at 1273 K
Fig.6  Comparison between simulated and experimental concentration profiles of fcc structured Al-Cu-Ni finite diffusion couple K3 at 1273 K
Fig.7  Composition-dependent interdiffusivities D?AlAlCu (a), D?AlNiCu (b), D?NiAlCu (c) and D?NiNiCu (d) of fcc structured Al-Cu-Ni finite diffusion couple determined by the pragmatic numerical inverse method at 1273 K
Fig.8  Comparison of the computed interdiffusivitiesEAlAlCu (a), EAlNiCu (b), ENiAlCu (c) and ENiNiCu (d) in semi-infinite and finite diffusion couple in fcc structured Al-Cu-Ni alloys
[1] Zhang X M, Liu S D.Mater China, 2013; 32(1): 39
[1] (张新明, 刘胜胆. 中国材料进展, 2013; 32(1): 39)
[2] Zhang X M, Deng Y L, Zhang Y.Acta Metall Sin, 2015; 51: 257
[2] (张新明, 邓运来, 张勇. 金属学报, 2015; 51: 257)
[3] Cao D J, Ta N, Du Y, Zhang L J.Mater China, 2015; 34(1): 50
[3] (曹东甲, 塔娜, 杜勇, 张利军.中国材料进展, 2015; 34(1): 50)
[4] Wei M, Tang Y, Zhang L J, Sun W H, Du Y.Metall Mater Trans, 2015; 46A: 3182
[5] Zhang L J, Stratmann M, Du Y, Sundman B, Steinbach I.Acta Mater, 2015; 88: 156
[6] Du Y, Liu S, Zhang L, Xu H, Zhao D, Wang A, Zhou L.Calphad, 2011; 35: 427
[7] Du Y, Zhang L, Cui S, Zhao D, Liu D, Zhang W, Sun W, Jie W.Sci China Technol Sci, 2012; 55: 306
[8] Liu M, Zhang L J, Chen W M, Xin J H, Du Y, Xu H H.Calphad, 2013; 41: 108
[9] Chen J, Zhang C, Wang J, Chen W M, Tang Y, Zhang L J, Du Y.Calphad, 2015; 50: 118
[10] Li J, Chen W, Liu D, Sun W, Zhang L, Du Y, Xu H.J Phase Equilib Diffusion, 2013; 34: 484
[11] Li J, Liu T, Chen W, Wang S, Zhang L, Du Y, Xu H.J Min Metall B-Metall, 2014; 50: 93
[12] Kirkaldy J S, Lane J E, Masson G R.Can J Phys, 1963; 41: 2174
[13] Kirkaldy J S, Young D J.Diffusion in the Condensed State. London: Institute of Metals, 1987: 41
[14] Zhang L, Liu D, Zhang W, Wang S, Tang Y, Ta N, Wei M, Du Y.In: Marthinsen K, Holmedal B, Li Y eds., Material Science Forum, Zurich: Trans Tech Publications, 2014: 611
[15] Kaufman L, ?gren J.Scr Mater, 2014; 70: 3
[16] Olson G B, Kuehmann C J.Scr Mater, 2014; 70: 25
[17] Dayananda M A, Sohn Y H.Metall Mater Trans, 1999; 30A: 535
[18] Zhang D, Morral J E, Brody H D.Mater Sci Eng, 2007; A447: 217
[19] Jaques A V, LaCombe J C.J Phase Equilib Diff, 2012; 33: 181
[20] Paul A.Philos Mag, 2015; 93: 2297
[21] Cheng K, Chen W, Liu D, Zhang L, Du Y.Scr Mater, 2014; 76: 5
[22] Chen W M, Zhang L J, Du Y, Tang C Y, Huang B Y. Scr Mater, 2014; 90-91: 53
[23] Xu H X, Chen W M, Zhang L J, Du Y, Tang C Y.J Alloy Compd, 2015; 644: 687
[24] Liu M. Master Thesis Central South University Changsha, 2014
[24] (柳萌. 中南大学硕士学位论文, 长沙, 2014)
[25] Andersson J O, ?gren J.J Appl Phys, 1992; 72: 1350
[26] Manning J R.Metall Trans, 1970; 1B: 499
[27] Dayananda M A.Metall Trans, 1983; 14A: 1851
[28] Léchelle J, Noyau S, Aufore L, Arredondo A, Audubert F.Diffu Fundam Org, 2012; 17(2): 1
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[3] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[8] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[10] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[11] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[12] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[13] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[14] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[15] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
No Suggested Reading articles found!