Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 698-706    DOI: 10.11900/0412.1961.2015.00496
Orginal Article Current Issue | Archive | Adv Search |
RESEARCH ON THE MORPHOLOGY AND FRACTALDIMENSION OF PRIMARY PHASE IN SEMISOLIDA356-La ALUMINUM ALLOY BY ELECTRO-MAGNETIC STIRRING
Zheng LIU1(),Lina XU2,Zhaofu YU2,Yangzheng CHEN2
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

Zheng LIU,Lina XU,Zhaofu YU,Yangzheng CHEN. RESEARCH ON THE MORPHOLOGY AND FRACTALDIMENSION OF PRIMARY PHASE IN SEMISOLIDA356-La ALUMINUM ALLOY BY ELECTRO-MAGNETIC STIRRING. Acta Metall Sin, 2016, 52(6): 698-706.

Download:  HTML  PDF(1311KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to obtain the fine, round and uniform distribution primary α phase in semisolid A356 alloy, the different amount of La was added into the alloy melt, and the melt was poured at 650 ℃ and slightly electromagnetically stirred under the condition of 30 Hz and 15 s, then, it was isothermally held at 590 ℃ for 10 min. The microstructure of the samples was observed by OM and SEM. The influences of La and electromagnetic stirring on morphology of primary α phase in semisolid A356 alloy were studied, and the symbolization of the characteristics of morphology of primary α phase by the fractal dimension was discussed in this work. The results showed that the morphology of primary α phase in semisolid A356 alloy was effectively improved by the suitable addition of La, no matter whether the semisolid slurry of A356-La alloy was prepared by electromagnetic stirring or not, the morphology of primary α phase showed better at first and then worse as the amounts of La increases, and the morphology and grain size of primary α phase reach the optimal state when the content of La was 0.4% (mass fraction). At the same time, the average equal-area circle diameter of the morphology of primary phase in semisolid A356-La alloy by electromagnetic stirring was finer than that without stirring, on the other hand, the shape factor was bigger than that without stirring. It implies that the primary α phase in semisolid A356-La alloy by electromagnetic stirring was smaller and more rounded than that without stirring, that is, the morphology of primary α phase in semisolid A356-La alloy by electromagnetic stirring was better than that without stirring. In addition, the real microstructure has fractal characteristics, and it was feasible to describe and analyze the change regularity and even the formation mechanism of the morphology of primary α phase in semisolid aluminum alloy by the principle of fractal geometry. The morphology of primary α phase in semisolid A356 alloy by the different process parameters had different fractal dimension. The fractal dimension of the semisolid primary α phase gradually became smaller with its morphology changed from dendritic-like to particle-like or globular-like.

Key words:  A356 aluminum alloy      La      electromagnetic stirring      morphology of primary phase      fractal     
Received:  23 September 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51144009 and 51361012), Natural Science Foundation of Jiangxi Province (No.20114bab206014) and Scientific Research Fund of Education Department of Jiangxi Province (No.GJJ14407)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00496     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/698

Fig.1  OM images of primary α phase in A356 alloy before (a) and after (b) electromagnetic stirring without rare earth addition
Fig.2  OM images of primary α phase in A356 alloy with 0.2%La (a), 0.4%La (b), 0.6%La (c) and 0.8%La (d) additions
Fig.3  OM images of primary α phase in A356 alloy under electromagnetic stirring with 0.2%La (a), 0.4%La (b), 0.6%La (c) and 0.8%La (d) additions
Fig.4  Average equal-area circle diameter (a) and shape factor (b) of primary α phase in A356-La alloy before and after electromagnetic stirring
Mass fraction of La / % No stirring Stirring
0.2 1.4246 1.4079
0.4 1.4074 1.4015
0.6 1.4184 1.4075
0.8 1.4433 1.4260
Table 1  Fractal dimensions of morphology of primary phases in semisolid A356 alloy under different conditions
Fig.5  Boundary processed graph (a) and bilogarithmic graph (b) of fractal dimension of primary phase in semisolid A356-0.2%La alloy without electromagnetic stirring (DB—fractal dimension, Nδ (Fn)—number of intersection with Fn, δk—network side length of a cube)
Fig.6  Boundary processed graph (a) and bilogarithmic graph (b) of fractal dimension of primary phase in semisolid A356-0.4%La alloy without electromagnetic stirring
Fig.7  Boundary graph processed (a) and bilogarithmic graph (b) of fractal dimension of primary phase in semisolid A356-0.4%La alloy under electromagnetic stirring
Fig.8  SE-SEM image (a) and EDS (b) of A356-0.4%La alloy
Fig.9  XRD spectrum of A356-0.4%La alloy
[1] Atkinson H V, Liu D.Mater Sci Eng, 2008; A496: 439
[2] Zhu G L, Xu J, Zhang Z F, Bai Y L, Shi L K.Acta Metall Sin (Engl Lett), 2009; 22: 408
[3] Chung I G, Bolouri A, Kang C G.Int J Adv Manuf Technol, 2012; 58: 237
[4] Nourouzi S, Baseri H, Kolahdooz A, Ghavamodini S M.J Mech Sci Technol, 2013; 27: 386
[5] Zhao J W, Wu S S, Wang L, Chen Q H, An P.Acta Metall Sin, 2009; 45: 314
[5] (赵君文, 吴树森, 万里, 陈启华, 安萍. 金属学报, 2009; 45: 314)
[6] Nafisi S, Emadi D, Shehata M T, Ghomashchi R.Mater Sci Eng, 2006; A432: 71
[7] Metan V, Eigenfeld K.Eur Phys J Spec Top, 2013; 220: 139
[8] Liu Z, Hu Y M.Rare Met, 2008; 27: 536
[9] Maja V, Stanislav K, Primo M.J Alloys Compd, 2011; 509: 7349
[10] Mousavi G S, Emamy M, Rassizadehgha J.Mater Sci Eng, 2012; A556: 573
[11] Jiang W M, Fan Z T, Dai Y C, Li C.Mater Sci Eng, 2014; A597: 237
[12] Kaur P, Dwivedi D K, Pathak P M.Int J Adv Manuf Technol, 2012; 63: 415
[13] Tsai Y C, Chou C Y, Lee S L, Lin C K, Lin J C, Lim S W.J Alloys Compd, 2009; 487: 157
[14] Liu Z, Liu X M, Zhu T, Chen Q C. Acta Metall Sin, 2015; 51: 272
[14] (刘政, 刘小梅, 朱涛, 谌庆春. 金属学报, 2015; 51: 272)
[15] Tang X L, Peng J H, Huang F L, Xu D Y, Du R S.Chin J Nonferrous Met, 2010; 20: 2112
[15] (唐小龙, 彭继华, 黄芳亮, 许德英, 杜日升. 中国有色金属学报, 2010; 20: 2112)
[16] Cheng P, Fan Z T, Zhao Z, Jiang W M.Foundry, 2010; 59: 833
[16] (成平, 樊自田, 赵忠, 蒋文明. 铸造, 2010; 59: 833)
[17] Li B, Wang H W, Jie J H, Wei Z J.J Alloys Compd, 2011; 509: 3387
[18] Li H, Li P, Xue K M.J Chin Rare Earth Soc, 2005; 23(S2): 104
[18] (李辉, 李萍, 薛克敏. 中国稀土学报, 2005; 23(增刊): 104)
[19] Liu Z, Hu Y M, Liu X M.Acta Metall Sin (Engl Lett), 2010; 23: 227
[20] Liu Y G, Zhang L M, Chen G, Liao H C, Sun G X.Nonferrous Met, 2005; 57(2): 15
[20] (刘永刚, 张良明, 陈光, 廖恒成, 孙国雄. 有色金属, 2005; 57(2): 15)
[21] Kang H S, Yoog W Y, Kim K H. Mater Sci Eng, 2007; A449-451: 334
[22] Zheng Z Q, Xiong X G, Yi R X, Wang L, Pei Z K.Nonferrous Met, 2010; 62(1): 6
[22] (郑志强, 熊新根, 易荣喜, 王丽, 裴志昆. 有色金属, 2010; 62(1): 6)
[23] Liu Z, Mao W M, Liu X M.Trans Nonferrous Met Soc China, 2009; 19: 1098
[24] Wang Z, Liu X F, He Y, Xie J X.Int J Min Met Mater, 2010; 17: 770
[25] Liu Z, Liu X M, Hu C H, Mao W M.Acta Metall Sin (Engl Lett), 2009; 22: 421
[26] Hangai Y, Kitahara S.Mater Des, 2009; 30: 1169
[27] Xie S S, Li X G, Wang H, Zhang Y.Technology of Semi-Solid Metal Processing. Beijing: Metallurgy Industry Press, 2012: 1
[27] (谢水生, 李兴刚, 王浩, 张莹编著. 金属半固态加工技术. 北京: 冶金工业出版社, 2012: 1)
[28] Zheng Z Q, Xiong X G, Chen K Y, Zhan D C, Yi R X.Spec Casting Nonferrous Alloys, 2008; 28: 171
[28] (郑志强, 熊新根, 陈克燕, 占多产, 易荣喜. 特种铸造及有色合金, 2008; 28: 171)
[29] Kang Y L, Mao W M, Hu Z Q.Theory and Technology of Semi-Solid Metal Materials Processing. Beijing: Science Press, 2004: 1
[29] (康永林, 毛卫民, 胡壮麒. 金属材料半固态加工理论与技术. 北京: 科学出版社, 2004: 1)
[30] Liu Z, Luo H L, Zhou X Y.Foundry, 2014; 63: 1212
[30] (刘政, 罗浩林, 周翔宇. 铸造, 2014; 63: 1212)
[31] Liu Z, Huang M Y, Cao K, Xu H B. Adv Mater Res, 2012; 424-425: 77
[32] Wang M, Zhao Y F, Chen Z N, Zeng Y P, Kang H J.Mater Des, 2015; 85: 724
[33] Zhang J Z.Fractals. Beijing: Tsinghua University Press, 1995: 1
[33] (张济忠. 分形. 北京:清华大学出版社, 1995: 1)
[34] Prigogine I.Introduction to Thermodynamics of Irreversible Processes. 3rd Ed., New York: Interscience Pub., 1967: 88
[35] Fan Z, Liu G, Hitchcock M. Mater Sci Eng, 2005; A413-414: 229
[36] Li R S.Non-Equilibrium Thermodynamics and Dissipative Structure. Beijing: Tsinghua University Press, 1986: 44
[36] (李如生. 非平衡态热力学与耗散结构. 北京: 清华大学出版社, 1986: 44)
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[7] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[8] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!