Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1227-1234    DOI: 10.11900/0412.1961.2015.00368
Current Issue | Archive | Adv Search |
INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES
Beijiang ZHANG(),Guangpu ZHAO,Wenyun ZHANG,Shuo HUANG,Shifu CHEN
High Temperature Materials Research Division, Central Iron & Steel Research Institute, Beijing 100081
Cite this article: 

Beijiang ZHANG,Guangpu ZHAO,Wenyun ZHANG,Shuo HUANG,Shifu CHEN. INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES. Acta Metall Sin, 2015, 51(10): 1227-1234.

Download:  HTML  PDF(5596KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Much attention has been paid to the development of more advanced materials for high-pressure compressor and turbine discs of gas turbine engines. A high performance wrought superalloy GH4065 for disc applications has been recently developed based on the comprehensive evaluation of a series of model alloys with characteristic chemical composition, lattice parameter, particularly γ’ volume fraction. The concentration of major alloying elements of GH4065 is closely similar with René 88 DT and specifically optimized considering the demands of ingot metallurgy technologies. Therefore, GH4065 can be considered as an ingot metallurgy version of powder metallurgy René 88 DT. Large scale vacuum arc remelting (VAR) ingots of GH4065 alloy with diameter up to 508 mm have been produced via standard triple melting techniques. Micro-scale segregation of alloying elements on large VAR ingot has been effectively suppressed due both to optimized alloying elements concentration and to improved melting techniques. Ultra-low carbon content (less than 0.02% in mass fraction) significantly decreases the dendritic segregation tendency of certain alloying elements and promotes the uniformity of microstructures. VAR ingot of GH4065 exhibits extraordinary hot plasticity, ingot conversion can be accomplished using conventional open die forging procedure. Fine and uniform γ+γ’ duplex structures can be obtained on billets and disc forgings via a newly developed multi-cycle thermomechanical processing method. The flow stress data show that the formation of γ+γ’ microduplex results in a significant decrease of flow stress in comparison with γ’ dispersion structures under exactly the same deformation conditions. The distribution of strain rate sensitivity m in relationship with temperature and strain rate accurately identifies a specific domain within which γ+γ’ microduplex exhibits superplasticity. Full-scale turbine discs of GH4065 alloy with diameter of 630 mm achieve an optimal combination of creep resistance, fatigue lifetime and ductility. GH4065 discs exhibit extraordinary microstructural and property stability during prolonged thermal exposure, which means that dendritic segregation has been successfully restricted to an acceptable level. The results reveal that highly alloyed disc alloys produced via ingot metallurgy techniques exhibit lower costs and higher productivity, and can still meet the ever increasing demand of high performance gas turbine engines.

Key words:  Ni-based superalloy      disc forging      ingot metallurgy      microstructure      mechanical property     
Fund: Supported by High Technology Research and Development Program of China (No.2012AA03A510) and National Basic Research Program of China (No.2010CB631203)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00368     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1227

Alloy C Co Cr W Mo Al Ti Nb Fe Ni
GH4586 0.049 11.68 18.09 3.05 8.11 1.65 3.31 Bal.
GH4742 0.052 10.40 14.15 5.03 2.51 2.56 2.62 0.53 Bal.
GH4065 0.011 12.98 15.93 4.02 4.03 2.12 3.78 0.72 1.01 Bal.
René 88 DT 0.050 12.96 16.01 4.01 4.02 2.21 3.75 0.75 0.20 Bal.
GH4720 0.012 14.96 16.03 1.23 2.98 2.53 5.01 Bal.
GH4975 0.115 15.58 7.96 10.22 1.18 5.01 2.49 1.66 0.10 Bal.
Table 1  Chemical compositions of high performance disc superalloys
Fig.1  Schematic of typical ingot metallurgy route of high performance wrought superalloy disc forgings (VIM—vacuum induction melting, ESR—electroslag remelting, VAR—vacuum arc remelting)
Fig.2  Macro-scale morphologies of large VAR ingot of GH4065 alloy
Fig.3  Low (a, b) and high (c, d) magnified as-deformed microstructures of GH4065 alloy during hot working process
Fig.4  Flow behaviors of GH4065 alloy during hot working process
Fig.5  Full scale turbine disc of GH4065 alloy with diameter of 630 mm
Fig.6  Macrostructures of billet (a) and full scale disc forging (b) of GH4065 alloy
Fig.7  Tensile yield stress (a) and high temperature rupture properties (b) of GH4065 alloy in comparison with some typical disc alloys[2,3,25]
[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[2] Decker R F. JOM, 2006; 58(9): 32
[3] Sims C T, Stoloff N S, Hagel W C. Superalloys II—High Temperature Materials for Aerospace and Industrial Power. New York: John wiley & Sons, 1987: 32
[4] Donachie M J, Donachie S J. Superalloys: A Technical Guide. Ohio: ASM International, 2002: 120
[5] Shi C X, Zhong Z Y. Acta Matall Sin, 1997; 33: 1 (师昌绪, 仲增墉. 金属学报, 1997; 33: 1)
[6] Heaney J A, Lasonde M L, Powell A M, Bond B J, O'Brien C M. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 67
[7] Devaux A, Picqué B, Gervais M F, Georges E, Poulain T, Héritier P. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Telesman J eds., Superalloy 2012: 12th Int Symp on Superalloys, Pittsburgh: TMS, 2012: 911
[8] Monajati H, Jahazi M, Yue S, Taheri A K. Metall Mater Trans, 2005; 36A: 895
[9] Bond B J, O'Brien C M, Russell J L, Heane J A, Lasonde M L. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 107
[10] Long Z D, Zhuang J Y, Deng B, Zhong Z Y. Acta Metall Sin, 1999; 35: 1211 (龙正东, 庄景云, 邓 波, 仲增墉. 金属学报, 1999; 35: 1211)
[11] Zhang B J, Zhao G P, Jiao L Y, Xu G H, Qin H Y, Feng D. Acta Metall Sin, 2005; 41: 351 (张北江, 赵光普, 焦兰英, 胥国华, 秦鹤勇, 冯 涤. 金属学报, 2005; 41: 351)
[12] Zhang B J, Zhao G P, Xu G H, Feng D. Acta Metall Sin, 2005; 41: 1207 (张北江, 赵光普, 胥国华, 冯 涤. 金属学报, 2005; 41: 1207)
[13] Carter W T, Jones R M F. JOM, 2005; 57(4): 52
[14] Cantwell P R, Tang M, Dillon S J, Luo J, Rohrer G S, Harmer M P. Acta Mater, 2014; 62: 1
[15] Robson J D. Acta Mater, 2013; 61: 7781
[16] Fang B, Ji Z, Liu M, Tian G, Jia C, Zeng T T, Hu B F, Wang C C. Mater Sci Eng, 2014; A590: 255
[17] Larrouy B, Villechaise P, Cormie J, Berteaux O. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 713
[18] Valitov V A. In: Ott E, Banik A, Liu X B, Dempster I, Heck K, Andersson J, Groh J, Gabb T, Helmink R, Sarnek A W eds., 8th Int Symp on Superalloy 718 and Derivatives, Pittsburgh: TMS, 2014: 665
[19] Wlodek S T, Kelly M, Alden D A. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc 8th Int Symp on Superalloy, Pennsylvania: TMS, 1996: 129
[20] Carter J L W, Kuper M W, Uchic M D, Mills M J. Mater Sci Eng, 2014; A605: 127
[21] Findley K O, Saxena A. Metall Mater Trans, 2005; 37A: 1469
[22] Tiley J, Viswanathan G B, Srinivasan R, Banerjee R, dimiduk D M, Fraser H L. Acta Mater, 2009; 57: 2538
[23] MacSleyne J, Uchic M D, Simmons J P, Graef M D. Acta Mater, 2009; 57: 6251
[24] Radis R, Schaffer M, Albu M, Kothleitner G, Polt P, Kozeschnik E. Acta Mater, 2009; 57: 5739
[25] Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 236
[26] Viswanathan G B, Sarosi P M, Henry M F, Whitis D D, Milligan W W, Mills M J. Acta Mater, 2005; 53: 3041
[27] Hayes R W, Unocic R R, Nasrollahzadeh M. Metall Mater Trans, 2015; 46A: 218
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!