Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (6): 677-684    DOI: 10.11900/0412.1961.2014.00501
Current Issue | Archive | Adv Search |
QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS
Cheng BI1,Zhipeng GUO1(),E LIOTTI2,Shoumei XIONG1,P S GRANT2
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Cite this article: 

Cheng BI, Zhipeng GUO, E LIOTTI, Shoumei XIONG, P S GRANT. QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS. Acta Metall Sin, 2015, 51(6): 677-684.

Download:  HTML  PDF(4038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Alloy solidification is an important process to control the mechanical properties of engineering products. During solidification, dendrite fragmentation occurs commonly as a key phenomenon to determine the microstructure and to obtain fine grain size. Recently, in situ synchrotron X-radiography technique was developed and applied to observe thermodynamic behaviors such as dendrite growth and fragmentation during solidification. External forces such as mechanical and electromagnetic stirring, and thermal shock were added into the solidification process to investigate their effects on the fragmentation behavior. However, most work conducted in literature focused on qualitative aspects e.g. morphology transition or solute distribution and quantitative investigation such as determining the specific relationship between fragmentation and solidification conditions was rather limited. In this work, the third generation synchrotron X-radiography technique was used to observe the solidification process of an Al-15%Cu (mass fraction) alloy. Experimental conditions including the strength of the pulsed electromagnetic fields, dendrite growth direction and the temperature gradients were varied and the subsequent effect on fragmentation was studied and quantified. A computer program was developed based on Matlab to perform the image processing and measurement. The fragmentation number according to experiments was counted and correlated to the mushy zone depth and local solid fraction. Results showed that a stronger electromagnetic field, growing against gravity and growing at higher velocity would significantly increase the fragmentation number. Furthermore, the fragmentation number followed a Gauss distribution as a function of either mushy zone depth or local solid fraction, and the maximum fragmentation occurred when the solid fraction was about 0.45. In the end, the extent to which caused those statistic results above were analyzed as the necking process due to the velocity field, the cumulative solid due to the gravity field and the liquid flow due to the electromagnetic field.

Key words:  aluminum alloy      X-ray synchrotron radiation      solidification      dendrite fragmentation      mushy zone      electromagnetic field     
Fund: Supported by National Natural Science Foundation of China (Nos.51275269 and 51205229)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00501     OR     https://www.ams.org.cn/EN/Y2015/V51/I6/677

Fig.1  Schematic of the sample arrangement and experimental set-up (I—electric field, FL—Lorentz force, B—magnetic field)
Group No. Growth direction Lorentz force / mN Number of replication
A Bottom to top - 16
B 0.3 10
C Top to bottom - 10
D 0.3 5
E 0.9 7
Table 1  Grouping of experiment conditions
Fig.2  Measurement of mushy zone solid fractions for different depth areas
Fig.3  Schematic of the quantification methods for the experimental images (Arrows in Fig.3b show the growth direction of dendrite)
Fig.4  Time cumulative dendrites fragmentation for 5 groups with different conditions as continuous curves (a) and fitting curves (b)
Fig.5  Histograms of fragment distribution for groups A (a), B (b), C (c) and D+E (d) within the mushy zone as a function of depth
Group No. Expected value / μm Standard deviation / mm R2
A 587 530 0.9818
B 504 588 0.9836
C 619 414 0.9715
D(E) 483(1005) 279(298) 0.9786
Table 2  Results of Gauss fitting for dendrites fragmentation distribution
Fig.6  Histograms of fragment distribution for groups A (a), B (b), C (c) and D+E (d) within the mushy zone as a function of solid fraction
Fig.7  Comparison of primary dendrites breaking and their tip velocities
No. Approximate slope of curves in Fig.7a Average tip velocity in Fig.7b / (mms-1)
1 0.1954 15.3167
2 0.1079 8.9249
3 0.0534 7.9262
4 0.0342 6.3794
5 0.1153 12.1784
Table 3  Relationship between tip velocity and primary dendrites breaking
[1] Jie W Q, Zhou Y H. J Northwest Polytech Univ, 1988; 6(1): 29 (介万奇, 周尧和. 西北工业大学学报, 1988; 6(1): 29)
[2] Grange G, Gastaldi J, Jourdan C, Billia B. J Cryst Growth, 1995; 151: 192
[3] Mathiesen R H, Arnberg L, Ramsoskar K, Weitkamp T, Rau C, Snigirev A. Metall Mater Trans, 2002; 33B: 613
[4] Mathiesen R H, Arnberg L. Mater Sci Eng, 2005; A413: 283
[5] Mathiesen R H, Arnberg L, Bleuet P, Somogyi A. Metall Mater Trans, 2006; 37A: 2515
[6] Limodin N, Salvo L, Suery M, DiMichiel M. Acta Mater, 2007; 55: 3177
[7] Campanella T, Charbon C, Rappaz M. Metall Mater Trans, 2004; 35A: 3201
[8] Li M J, Tamura T, Omura N, Miwa K. J Alloys Compd, 2010; 494: 116
[9] Wang T M, Zhu J, Chen Z N, Xu J J. Sci Sin Phy, Mech Astron, 2011; 41: 23 (王同敏, 朱 晶, 陈宗宁, 许菁菁. 中国科学: 物理学 力学 天文学, 2011; 41: 23)
[10] Liotti E, Liu A, Vincent R, Kumar S, Guo Z, Connolley T, Dolbnya I P, Hart M, Arnberg L, Mathiesen R H, Grant P S. Acta Mater, 2014; 70: 228
[11] Shu D, Sun B D, Mi J W, Grant P S. Phys Metall Mater Sci, 2012; 43A: 3755
[12] Mapelli C, Gruttadauria A, Peroni M. J Mater Process Technol, 2010; 210: 306
[13] Ruvalcaba D, Mathiesen R H, Eskin D G, Arnberg L, Katgerman L. Acta Mater, 2007; 55: 4287
[14] Pataric A, Mihailovic M, Gulisija Z. J Mater Sci, 2012; 47: 793
[15] Liu S, Lu S Z, Hellawell A. J Cryst Growth, 2002; 234: 740
[16] Yasuda H, Ohnaka I, Kawasaki K, Suglyama A, Ohmichi T, Iwane J, Umetani K. J Cryst Growth, 2004; 262: 645
[17] Stransky K, Kavicka F, Sekanina B, Stetina J, Gontarev V, Dobrovska J. Mater Technol, 2011; 45: 163
[18] Arnberg L, Mathiesen R H. JOM, 2007; 59(8): 20
[19] Ananiev S, Nikrityuk P, Eckert K. Acta Mater, 2009; 57: 657
[20] Schenk T, Thi H N, Gastaldi J, Reinhart G, Cristiglio V, Mangelinck-Noel N, Klein H, Hartwig J, Grushko B, Billia B. J Cryst Growth, 2005; 275: 201
[21] Zhu J, Wang T M, Chen Z N, Xu J J, Xie H L, Xiao T Q, Li T J. In: Ludwig A ed., IOP Conf Ser: Mater Sci Eng, 2012; 33: paper No.012039
[22] Guo Z, Mi J, Xiong S M, Grant P S. J Comput Phys, 2014; 257: 278
[23] Rack A, Weitkamp T, Riotte M, Grigoriev D, Rack T, Helfen L, Baumbach T, Dietsch R, Holz T, Kramer M, Siewert F, Meduna M, Cloetens P, Ziegler E. J Synchrotron Radiat, 2010; 17: 496
[24] Puncreobutr C, Phillion A B, Fife J L, Lee P D. Acta Mater, 2014; 64: 316
[25] Nielsen O, Arnberg L, Mo A, Thevik H. Metall Mater Trans, 1999; 30A: 2455
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[6] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[7] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[8] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[9] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[12] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[14] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[15] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
No Suggested Reading articles found!