Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (6): 668-676    DOI: 10.11900/0412.1961.2014.00523
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS
Mingfan QI,Yonglin KANG(),Bing ZHOU,Guoming ZHU,Huanhuan ZHANG
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS. Acta Metall Sin, 2015, 51(6): 668-676.

Download:  HTML  PDF(8320KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the forced convection mixing (FCM) principle, a self-developed FCM semisolid slurry preparation device was successfully developed. Taking AZ91D magnesium alloy tensile parts for example, the rheo-diecasting process that consists of slurry preparation, transportation and forming was achieved by combining with a diecasting machine. Microstructural characteristics of FCM rheo-diecasting parts in different processing parameters were investigated. Mechanical properties of AZ91D alloy parts in different processes were compared. Besides, the formation mechanism and solidification behavior of semisolid slurry were analyzed in FCM rheo-diecasting process. The results show that processing parameters have a great effect on the microstructures of parts, increasing rotation speed or decreasing barrel temperature appropriately is beneficial to optimizing the microstructure. The process not only can produce parts with fine, spherical and uniformly distributed primary a-Mg particles, but also is able to improve mechanical performance of parts significantly. Compared with traditional diecasting, the yield strength remains unchanged, but the ultimate strength and elongation are increased by 12.5% and 80.0%, respectively. Furthermore, compared with parts subjected to T4 and T6 heat treatment, the ultimate strength of the as-cast is the lowest, and the yield strength and elongation are between T4 and T6.

Key words:  AZ91D magnesium alloy      forced convection mixing (FCM)      rheo-diecasting      microstructure evolution      mechanical properties      heat treatment     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00523     OR     https://www.ams.org.cn/EN/Y2015/V51/I6/668

Fig.1  Structure diagram of forced convection mixing (FCM) machine (a) and schematic diagram of FCM rheo-diecasting process (b) (1—slurry outlet, 2—graphite blockage, 3—emptying core bar, 4—heating and cooling elements, 5—inner barrel, 6—graphite lining, 7—spiral stirring rod, 8—insulation, 9—funnel, 10—graphite insulation ring, 11—bearing block, 12—gear, 13—adjusting handle, 14—emptying handle, 15—bearing, 16—adjustable bracket)
Fig.2  Schematic diagram of the FCM rheo-diecasting tensile test sample (unit: mm)
Fig.3  OM images of AZ91D alloy rheo-diecasting parts under rotation speeds of 100 r/min (a), 300 r/min (b), 500 r/min (c) and 700 r/min (d)
Fig.4  Mean size and shape factor of primary a-Mg particles in AZ91D alloy rheo-diecasting parts under different rotation speeds at barrel temperature of 560 ℃
Fig.5  OM images of AZ91D alloy rheo-diecasting parts under barrel temperatures of 560 ℃ (a), 570 ℃ (b) and 580 ℃ (c)
Fig.6  Mean size and shape factor of primary a-Mg particles in AZ91D alloy rheo-diecasting parts under different barrel temperatures at rotation speed of 500 r/min
Process Yield strength / MPa Ultimate strength / MPa Elongation / %
Traditional diecasting 144 200 2.5
FCM rheo-diecasting 138 225 4.5
FCM rheo-diecasting+T4 99 240 8.5
FCM rheo-diecasting+T6 156 245 3.5
Table 1  Mechanical properties of AZ91D alloy parts in different processes
Fig.7  SEM images of AZ91D alloy rheo-diecasting parts after T4 heat treatment (a) and T6 heat treatment (b)
Fig.8  Fractographs of AZ91D alloy tensile parts for traditional diecasting (a), FCM rheo-diecasting (b), T4 heat treatment (c) and T6 heat treatment (d)
Fig.9  Schematic diagrams of traditional crystal dissociating (a) and crystal dissociating in FCM device (b)
Fig.10  Solidification process of the melt in traditional diecasting and FCM rheo-diecasting
[1] Jiang J F, Wang Y, Li Y F, Shan W W. Luo S J. Mater Des, 2012; 37: 202
[2] Mustafa K K. Int J Adv Manuf Technol, 2008; 39: 851
[3] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[4] Tzamtzis S, Zhang H, Xia M, Hari Babu N, Fan Z. Mater Sci Eng, 2011; A528: 2664
[5] Le Q C, Ou P, Wu Y D, Lu G M, Cui J Z, Qiu Z X. Acta Metall Sin, 2002; 38: 219 (乐启炽, 欧 鹏, 吴跃东, 路贵民, 崔建忠, 邱竹贤. 金属学报, 2002; 38: 219)
[6] Zhao Z D, Chen Q, Chao H Y, Huang S H. Mater Des, 2010; 31: 1906
[7] Jiang J F, Wang Y, Chen G, Liu J, Li Y F, Luo S J. Mater Des, 2012; 40: 541
[8] Polmear L J. Mater Trans, 1996; 37: 12
[9] Chul K J, Chung G K. Hydrogen Energy, 2012; 37: 1661
[10] Lai H Q, Xu X, Fan H X. Met Form Technol, 2004; 22(2): 12 (赖华清, 徐 翔, 范宏训. 金属成形工艺, 2004; 22(2): 12)
[11] Yang L Q, Kang Y L, Zhang F, Ding R H, Li J. Trans Nonferrous Met Soc China, 2010; 20: 966
[12] Fan Z, Fang X, Ji S. Mater Sci Eng, 2005; A412: 298
[13] Zhou B, Kang Y L, Zhang J, Gao J Z, Zhang F. Solid State Phenomena, 2013; 192-193: 422
[14] Tzamtzis S, Zhang H, Hari Babu N, Fan Z. Mater Sci Eng, 2010; A527: 2929
[15] Guo D Y, Yang Y S, Dong W H, Hua F A, Cheng G F, Hu Z Q. Acta Metall Sin, 2003; 39: 914 (郭大勇, 杨院生, 童文辉, 花福安, 程根发, 胡壮麒. 金属学报, 2003; 39: 914)
[16] Flemings M C. Metall Trans, 1991; 22A: 957
[17] Ohno A. Solidification-the Separation Theory and Its Practical Applications. Berlin: Springer-Verlag Press, 1987: 36
[18] Trivedi R. J Cryst Growth, 1980; 48: 93
[19] Zhang X L, Li T J, Xie S S. Chin J Nonferrous Met, 2011; 21: 1881 (张小立, 李廷举, 谢水生. 中国有色金属学报, 2011; 21: 1881)
[20] Minkoff I. Solidification and Cast Structure. Chichester: John Wiley & Sons Ltd, 1986: 79
[21] Molenaar J M M, Katgerman L, Kool W H. J Mater Sci, 1986; 21: 389
[22] Guo H M, Yang X J, Luo X Q. J Alloys Compd, 2009; 482: 412
[23] Doherty R D, Lee H I, Feest E A. Mater Sci Eng, 1984; A65: 181
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[5] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[10] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[12] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[13] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[14] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[15] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
No Suggested Reading articles found!