Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (7): 921-931    DOI: 10.11900/0412.1961.2021.00293
Research paper Current Issue | Archive | Adv Search |
Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy
WANG Chunhui1, YANG Guangyu1(), ALIMASI Aredake1, LI Xiaogang2, JIE Wanqi1
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2.Northwest Industries Group Co. Ltd., Xi'an 710043, China
Cite this article: 

WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy. Acta Metall Sin, 2022, 58(7): 921-931.

Download:  HTML  PDF(2514KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sand inkjet three-dimensional printing (3DP) technology is ideal for rapidly producing sand mold and sand core for complex thin-walled castings without using traditional casting flasks and patterns, as it offers high printing speed, high dimensional accuracy, good collapsibility, high productivity, and low cost. The constrained rod casting and single spiral fluidity methods were used to investigate the hot tearing susceptibility (HTS) and fluidity of ZL205A casting alloy under various printing parameters of a 3DP sand mold (furan resin content 1.5%-3.0% (mass fraction), printing layer 0.28-0.32 mm). The HTS of the ZL205A alloy first increased and then decreased with increasing resin content, whereas steadily decreased as the printing layer thickness increased. The HTS of the ZL205A alloy was mainly related to the strength of the 3DP sand mold. The fluidity of the ZL205A alloy decreased with increasing resin content and printing layer thickness. Finally, using the theoretical regression and normalization method, the regression equations between the 3DP sand mold's printing parameters and ZL205A alloy's castability were established. The optimized 3DP-printing parameters suitable for ZL205A alloy using 3DP sand mold casting were determined. The resin content was 1.5%, and the printing layer thickness was 0.28 mm.

Key words:  3DP (three-dimensional printing) technology      sand mold casting      ZL205A aluminum alloy      hot tearing susceptibility      fluidity     
Received:  16 July 2021     
ZTFLH:  TG245  
Fund: National Key Research and Development Program of China(2018YFB1106800);Ningxia Thirteen Five-Years Major Science and Technology Project(2018BCE01001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00293     OR     https://www.ams.org.cn/EN/Y2022/V58/I7/921

Fig.1  Three-dimensional printing (3DP) sand mold (a) and schematics of hot tearing susceptibility testing (unit: mm) (b), and 3DP sand mold of the single-helix fluidity testing (c)
Fig.2  Schematics of the tensile specimen of 3DP sand mold (unit: mm)
Fig.3  Macro-morphologies of ZL205A alloy hot tearing susceptibility bars prepared by 3DP sand mold with different resin contents (mass fraction) and printing layer thicknesses (Hot crackings are marked by rectangles)
Fig.4  Schematics of factors influencing the hot tearing susceptibility
(a) rod length factor (flength) (b) tear location factor (flocation)
Fig.5  Variation curves of hot tearing susceptibility (Y1) of the ZL205A alloy with different 3DP printing parameters (Y1 is calculated by Eq.(1))
Fig.6  Variation curves of the mold tensile strength with different 3DP printing parameters
Fig.7  Cooling rate variation curve of ZL205A alloy in 3DP sand molds with different resin contents under the printing layer thickness of 0.28 mm
Fig.8  Macro-morphologies of ZL205A alloy fluidity specimens prepared by 3DP sand mold with different resin contents and printing layer thicknesses
Fig.9  Variation curves of the fluidity length of the ZL205A alloy with different 3DP printing parameters
Fig.10  Variation curve of the gas evolution from different resin contents for 3DP mold sand under the printing layer thickness of 0.28 mm
ipiqi
1-0.257542097245903-294046.970408271
2-2.83015706572016178976.497962565
32.45922736413675-69271.2661368186
4-0.36379389490468810360.1236350591
5-16.26920605468641550446.7040738
60.283900116701206-3206585.50013
70.010848953995002429.3705896768819
8118.828514840866-30.9026912200925
9423.402071622377
10-1786.70014340018
Table 1  Parameter values of constants p1-p8 and q1-q10 in Eq.(2)
X1X2Y1Y2ZY1*Y2*Z*Z*-Z∣ / Z
%mmmmmm%
1.50.28411850.9784.1171193.4211.002642.54
1.50.30211750.9591.8131172.0750.949290.97
1.50.32010700.621-0.2751066.8090.643381.25
2.00.285011700.67747.0031163.5370.673830.43
2.00.301811600.82423.9481146.4610.751068.88
2.00.32410650.6143.0531081.6000.669719.05
2.50.289011050.25791.5411088.8370.2000422.30
2.50.305010500.31346.9371069.9040.3933725.60
2.50.32610200.4676.5091015.5430.450333.50
3.00.28010900.7120.1631100.2410.742254.23
3.00.30010800.682-0.2281086.0690.700702.77
3.00.32010600.621-0.5821045.6070.250836.50
Table 2  Experimental and fitted values of the foundry properties for the ZL205A alloy prepared by 3DP sand mold with different printing parameters
Yi*RMSESSERR2DC
Y1*2.19513412757.823366040.99689127990.99379222390.9937922238
Y2*11.605996891616.3899680.97624079600.95304609190.9530460430
Table 3  Fitted errors and correlation analyses of the foundry properties for the ZL205A alloy
Fig.11  Casting performance index of the ZL205A alloy with the different 3DP printing parameters (Z* is shown as a rainbow surface, and Z is shown as a black solid ball)
1 Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing [J]. Engineering, 2018, 4: 11
2 Ma T, Li Z, Cheng Q, et al. Analyswas of the application prospect of 3D printing technology in the field of sand casting [J]. Mod. Cast Iron, 2019, 39(2): 38
马 涛, 李 哲, 程 勤 等. 3D打印技术在砂型铸造领域的应用前景浅析 [J]. 现代铸铁, 2019, 39(2): 38
3 Ye W, Qu S, Zhao J H. Interpretation of China's green smart casting development roadmap [A]. Proceedings of the 2018 Chongqing Foundry Annual Conference [C]. Chongqing: Foundry Institution of Chongqing Mechanical Engineering Society, 2018: 6
叶 未, 屈 伸, 赵建华. 中国绿色智能铸造发展路线图解读 [A]. 2018重庆市铸造年会论文集 [C]. 重庆: 重庆市机械工程学会铸造分会, 2018: 6
4 Xiao J J, Wang P C, Li X C, et al. Direct shell production casting by selective laser sintering precoated resin sand [J]. Found. Technol., 2008, 29: 24
肖军杰, 王鹏程, 李小城 等. 激光选区烧结覆膜树脂砂的直接铸型制造 [J]. 铸造技术, 2008, 29: 24
5 Le Néel T A, Mognol P, Hascoët J Y. A review on additive manufacturing of sand molds by binder jetting and selective laser sintering [J]. Rapid Prototyp. J., 2018, 24: 1325
doi: 10.1108/RPJ-10-2016-0161
6 Gill S S, Kaplas M. Comparative study of 3D printing technologies for rapid casting of aluminium alloy [J]. Mater. Manuf. Processes, 2009, 24: 1405
doi: 10.1080/10426910902997571
7 Dimitrov D, Schreve K, De Beer N. Advances in three dimensional printing—State of the art and future perspectives [J]. Rapid Prototyp. J., 2006, 12: 136
doi: 10.1108/13552540610670717
8 Chhabra M, Singh R. Rapid casting solutions: A review [J]. Rapid Prototyp. J., 2011, 17: 328
doi: 10.1108/13552541111156469
9 Utela B, Storti D, Anderson R, et al. A review of process development steps for new material systems in three dimensional printing (3DP) [J]. J. Manuf. Processes, 2008, 10: 96
doi: 10.1016/j.jmapro.2009.03.002
10 Wang A H, Jin T S. Inkjet 3D printing casting industry applications and advantages [A]. Proceedings of the 2017 China Foundry Activity Week [C]. Suzhou: Foundry Institution of Chinese Mechanical Engineering Society, 2017: 546
王爱辉, 金天拾. 喷墨3D打印铸造行业应用及优势 [A]. 2017中国铸造活动周论文集 [C]. 苏州: 中国机械工程学会铸造分会, 2017: 546
11 Kang J W, Ma Q X. The role and impact of 3D printing technologies in casting [J]. China Found., 2017, 14: 157
12 Almaghariz E S, Conner B P, Lenner L, et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores [J]. Int. J. Metalcast., 2016, 10: 240
doi: 10.1007/s40962-016-0027-5
13 Snelling D, Li Q, Meisel N, et al. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds [J]. Adv. Eng. Mater., 2015, 17: 923
doi: 10.1002/adem.201400524
14 Jin F. New Development of 3D printing technology for inkjet sand mould based on binder jetting [J]. Mechan. Electr. Eng. Technol., 2018, 47(9): 109
金 枫. 基于粘结剂喷射的喷墨砂型三维打印技术新进展 [J]. 机电工程技术, 2018, 47(9): 109
15 Dong S, Zhao H T, Wu G. Comparison and application analysis of 3D printing technology for sand casting mold [J]. Tec. Automat. Appl., 2019, 38(11): 154
董 莘, 赵寒涛, 吴 冈. 铸造砂型3D打印技术的对比与应用分析 [J]. 自动化技术与应用, 2019, 38(11): 154
16 Zhang D S, Yang J M, Huang D Z, et al. Development and research status of three dimensional printing technology with 3DP [J]. Manuf. Technol. Mach. Tool, 2017, (3): 38
张迪湦, 杨建明, 黄大志 等. 3DP法三维打印技术的发展与研究现状 [J]. 制造技术与机床, 2017, (3): 38
17 Wu H B, Gao W L, Song X F, et al. A comparative study of 3D printing consumables influencing resin sand properties [J]. Mod. Cast Iron, 2019, 39(5): 48
吴红兵, 高文理, 宋贤发 等. 3D打印耗材对树脂砂型性能影响的对比研究 [J]. 现代铸铁, 2019, 39(5): 48
18 Lin S K, Dong X P, Guo T, et al. 3DP printing sand casting technology for high-graded automobile stamping die casting steel parts [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 392
林少凯, 董选普, 郭 艇 等. 高端汽车冲压模铸钢件的3DP打印砂型铸造技术 [J]. 特种铸造及有色合金, 2020, 40: 392
19 Yang G Y, Jie W Q, Zhang R Q, et al. Behavior of microstructure evolution of ZL205A cast aluminum alloy during semi-solid isothermal annealing process [J]. Rare Met. Mater. Eng., 2007, 36: 1717
杨光昱, 介万奇, 张润强 等. ZL205A铝合金近液相线等温半固态组织转变特性 [J]. 稀有金属材料与工程, 2007, 36: 1717
20 Zhou Z B, Kou H C, Li J S, et al. Study on the hot tearing tendency of ZL205A alloy [A]. Proceedings of the 2012 China foundry activity week [C]. Suzhou: Foundry Institution of Chinese Mechanical Engineering Society, 2012: 614
周中波, 寇宏超, 李金山 等. ZL205A合金热裂倾向研究 [A]. 2012中国铸造活动周论文集 [C]. 苏州: 中国机械工程学会铸造分会, 2012: 614
21 Cai Q, Zhang X B, Zhang Y J, et al. Research of hot tearing behavior of ZL205A alloy based on ProCAST numerical simulation [J]. Found. Technol., 2015, 36: 1503
蔡 庆, 张晓波, 张亦杰 等. 基于ProCAST数值模拟ZL205A热裂行为的研究 [J]. 铸造技术, 2015, 36: 1503
22 Li X, Wang T, Rong F J, et al. Study on the defects of ZL205 alloy shell castings [A]. Proceedings of the 2019 China foundry activity week [C]. Wuhan: Foundry Institution of Chinese Mechanical Engineering Society, 2019: 721
李 笑, 王 涛, 荣福杰 等. ZL205合金壳体铸件缺陷研究 [A]. 2019中国铸造活动周论文集 [C]. 武汉: 中国机械工程学会铸造分会, 2019: 721
23 Suyitno, Eskin D G, Katgerman L. Structure observations related to hot tearing of Al-Cu billets produced by direct-chill casting [J]. Mater. Sci. Eng., 2006, A420: 1
24 Gao Z M, Jie W Q, Liu Y Q, et al. Formation Mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
25 Khandelwal H, Ravi B. Effect of binder composition on the shrinkage of chemically bonded sand cores [J]. Mater. Manuf. Processes, 2015, 30: 1465
doi: 10.1080/10426914.2014.994779
26 Xue L, Hu C A, Li X, et al. Research on the influence of furan resin addition on the performance and accuracy of 3D printing sand mold [J]. IOP Conf. Ser., 2018, 392: 062044
27 Feng Z P, Xu G Q, Liu G Q. Research on factors influencing of 3D-printed furan resin viscosity on seep and sand strength [J]. Found. Equip. Technol., 2020, (5): 49
冯正鹏, 徐国强, 刘国强. 3D打印呋喃树脂黏度对渗透及砂型强度影响的研究 [J]. 铸造设备与工艺, 2020, (5): 49
28 Xing J L, He L, Han W, et al. Research on synthesis and performance of a high-strength and high-temperature resistant phenolic resin used in three dimensional printing of sand mold [J]. Foundry, 2016, 65: 966
邢金龙, 何 龙, 韩 文 等. 一种3D砂型打印用高强度耐高温酚醛树脂的合成及其使用性能研究 [J]. 铸造, 2016, 65: 966
29 Snelling D A, Williams C B, Druschitz A P. Mechanical and material properties of castings produced via 3D printed molds [J]. Addit. Manuf., 2019, 27: 199
doi: 10.1016/j.addma.2019.03.004
30 Sivarupan T, El Mansori M, Coniglio N, et al. Effect of process parameters on flexure strength and gas permeability of 3D printed sand molds [J]. J. Manuf. Process, 2020, 54: 420
doi: 10.1016/j.jmapro.2020.02.043
31 Deng C Y, Kang J W, Shangguan H L, et al. Insulation effect of air cavity in sand mold using 3D printing technology [J]. China Foundry, 2018, 15: 37
doi: 10.1007/s41230-018-7243-y
32 Gao G L, Zhang W K, Du Z M, et al. Application of forming process parameters for 3D printing sand mold and core [J]. Foundry, 2020, 69: 627
高桂丽, 张伟坤, 杜志敏 等. 基于喷墨3D打印的铸造砂型(芯)成形工艺参数应用研究 [J]. 铸造, 2020, 69: 627
33 Xu W Y, Chen W P, Jin F, et al. Study of cartridge receiver gravity casting process based on 3D printing sand mold and numerical simulation [J]. Foundry, 2019, 68: 905
徐伟业, 陈维平, 金 枫 等. 基于数值模拟和砂型3D打印的机匣整体重力铸造工艺研究 [J]. 铸造, 2019, 68: 905
34 Ni Y Q, Wang J, Chen X M, et al. Development of rapid casting technology for cylinder block based on sand core 3D printing technology [J]. Foundry, 2019, 68: 911
倪允强, 王 佳, 陈秀明 等. 基于砂型3D打印技术的气缸体快速铸造工艺开发 [J]. 铸造, 2019, 68: 911
35 Si J M, Lü S L, Li J J, et al. Manufacture of large thin wall electronic case framework based on process simulation and 3DP sand mold [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1384
司金梅, 吕三雷, 李晶晶 等. 基于工艺仿真和3DP砂型的大型薄壁电子机箱骨架制造 [J]. 特种铸造及有色合金, 2020, 40: 1384
36 Hong R Z, Zhou Y J, Zuo Q, et al. Manufacturing of integrated complex aluminium shell based on simulation and 3D printed sand mold [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 1192
洪润洲, 周永江, 左 强 等. 基于仿真与3D打印砂型的复杂铝合金壳体制造 [J]. 特种铸造及有色合金, 2019, 39: 1192
37 Li X Y. Casting Handbook Volume 5: Casting Process [M]. 3rd Ed., Beijing: China Machine Press, 2011: 12
李新亚. 铸造手册-第5卷-铸造工艺 [M]. 第 3版, 北京: 机械工业出版社, 2011: 12
38 Luo S F, Yang G Y, Zou Z, et al. Hot tearing susceptibility of binary Mg-Gd alloy castings and influence of grain refinement [J]. Adv. Eng. Mater., 2018, 20: 1800139
doi: 10.1002/adem.201800139
39 Cao G, Kou S. Hot cracking of binary Mg-Al alloy castings [J]. Mater. Sci. Eng., 2006, A417: 230
40 Liu Y H, Wang Z H, Liu K, et al. Effects of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys [J]. Acta Metall. Sin., 2019, 55: 389
刘耀鸿, 王朝辉, 刘 轲 等. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响 [J]. 金属学报, 2019, 55: 389
doi: 10.11900/0412.1961.2018.00399
41 Chen Z P, Ye F Y. Effects of resin content and heat treatment temperature on the tensile strength of sand molds fabricated by three-dimensional printing [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1380
陈志平, 叶福源. 树脂和热处理对3D打印成形砂型抗拉强度的影响 [J]. 特种铸造及有色合金, 2020, 40: 1380
[1] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
No Suggested Reading articles found!