|
|
EFFECT OF HEAT TREATMENTS ON THE MICROSTRUCTURE AND PROPERTY OF A NEW NICKEL BASE SINGLE CRYSTAL SUPERALLOY |
NING Likui1, ZHENG Zhi1, JIN Tao1, TANG Song1, LIU Enze1, TONG Jian1, YU Yongsi2, SUN Xiaofeng1 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 2 Dalian University of Technology, Dalian 116023 |
|
Cite this article:
NING Likui, ZHENG Zhi, JIN Tao, TANG Song, LIU Enze, TONG Jian, YU Yongsi, SUN Xiaofeng. EFFECT OF HEAT TREATMENTS ON THE MICROSTRUCTURE AND PROPERTY OF A NEW NICKEL BASE SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2014, 50(8): 1011-1018.
|
Abstract Nickel base single crystal superalloys are widely used to fabricate turbine blade materials, since they have high temperature capability, excellent mechanical and environmental properties. Re is known as a very efficient solid-solution element that increases high temperature strength, so novel single crystal superalloys contain a high level of Re content. Whereas enhancement of Re in the dendrite arms facilitates inhomogeneous distribution of other alloy elements, it become difficult and important to determine the heat treatment in Re-containing single crystal superalloys. Effects of heat treatments on microstructure and properties in a new Re-containing single crystal superalloy have been investigated in this work. The solidus and liquidus temperature measured by differential thermal analysis (DTA) is 1339 and 1371 ℃, respectively. The incipient melting temperature determined by metallographic testing method is in the range between 1305 and 1310 ℃. The results show that Ti resides preferentially followed by B and S in the incipient melting regions. γ' precipitates all display cubic after 4 h aged at 1080, 1100 and 1120 ℃ followed by air cooling (A.C.). The optimum heat treatment is 1290 ℃, 2 h+1320 ℃, 4 h, A.C.+1100 ℃, 4 h, A.C.+900 ℃, 24 h, A.C.. Microsegregation of alloy elements reduces significantly after this heat treatment. The rupture property performs well and the rupture life is up to 78.2 h under the condition of 1070 ℃ and 140 MPa.
|
Received: 30 December 2013
|
|
[1] |
Gell M, Duhl D N, Giamei A F. In: Tien J, Wlodek S, Morrow H, Gell M, Maurer G E eds., Superalloys 1980, Champion, PA: TMS, 1980: 205
|
[2] |
Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 45
|
[3] |
Walston W S, O′Hara K S, Rose E W. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 27
|
[4] |
Guo J T. Acta Metall Sin, 2010; 46: 513
|
|
(郭建亭. 金属学报, 2010; 46: 513)
|
[5] |
Liu L, Huang T W, Xiong Y H, Yang A M, Zhao Z L, Zhang R, Li J S. Mater Sci Eng, 2005; A394: 1
|
[6] |
Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z. Acta Metall Sin, 2012; 48: 845
|
|
(刘 刚, 刘 林, 张胜霞, 杨初斌, 张 军, 傅恒志. 金属学报, 2012; 48: 845)
|
[7] |
Wright I G, Gibbons T B. Int J Hydrogen Energy, 2007; 32: 3610
|
[8] |
Safari J, Nategh S. J Mater Process Technol, 2006; 176: 240
|
[9] |
Appa Rao G, Kumar M, Srinivas M, Sarma D S. Mater Sci Eng, 2003; A355:114
|
[10] |
Li J, Wahi R P. Acta Metall, 1995; 43: 507
|
[11] |
Huang Q Y,Li H K. Superalloys. Beijing: Metallurgical Industry Press, 2000: 140
|
|
(黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 140)
|
[12] |
Yang J X. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006
|
|
(杨金侠. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
|
[13] |
Wilson B C, Hickman J A, Fuchs G E. In: Fuchs G, James A W, Gabb T, McLean M, Harada H eds., Advanced Materials and Processes for Gas Turbines. Warrendale, PA: TMS, 2002: 145
|
[14] |
Diologent F, Caron P. Mater Sci Eng, 2004; A385: 245
|
[15] |
Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
|
[16] |
Sengupta A, Putatunda S K, Bartosiewicz L, Hangas J, Nailos P J, Peputapeck M, Alberts F E. J Mater Eng Perform, 1994; 3: 664
|
[17] |
Diologent F, Caron P. Mater Sci Eng, 2004; A385: 245
|
[18] |
Caron P, Henderson P J, Khan T, McLean M. Scr Metall, 1986; 20: 875
|
[19] |
Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
|
[20] |
MacKay R A, Ebert L J. Metall Trans, 1985; 16A: 1969
|
[21] |
Guan X R, Zheng Z, Tong J, Liu E Z, Yu Y S, Zhu Y X, Zhai Y C. Chin J Nonferrous Met, 2009; 19: 272
|
|
(管秀荣, 郑 志, 佟 健, 刘恩泽, 于永泗, 朱耀宵, 翟玉春. 中国有色金属学报, 2009; 19: 272)
|
[22] |
Sun W R, Guo S R, Lu D Z, Hu Z O. Mater Lett, 1997; 31: 195
|
[23] |
Semiatin S L, Kramb R C, Turner R E, Zhang F, Antony M M. Scr Mater, 2004; 51: 491
|
[24] |
Liu L R. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
|
|
(刘丽荣. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
|
[25] |
Ping D H, Gu Y F, Cui C Y, Harada H. Mater Sci Eng, 2007; A456: 99
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|