Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 1011-1018    DOI: 10.11900/0412.1961.2013.00846
Current Issue | Archive | Adv Search |
EFFECT OF HEAT TREATMENTS ON THE MICROSTRUCTURE AND PROPERTY OF A NEW NICKEL BASE SINGLE CRYSTAL SUPERALLOY
NING Likui1, ZHENG Zhi1, JIN Tao1, TANG Song1, LIU Enze1, TONG Jian1, YU Yongsi2, SUN Xiaofeng1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Dalian University of Technology, Dalian 116023
Cite this article: 

NING Likui, ZHENG Zhi, JIN Tao, TANG Song, LIU Enze, TONG Jian, YU Yongsi, SUN Xiaofeng. EFFECT OF HEAT TREATMENTS ON THE MICROSTRUCTURE AND PROPERTY OF A NEW NICKEL BASE SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2014, 50(8): 1011-1018.

Download:  HTML  PDF(9681KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel base single crystal superalloys are widely used to fabricate turbine blade materials, since they have high temperature capability, excellent mechanical and environmental properties. Re is known as a very efficient solid-solution element that increases high temperature strength, so novel single crystal superalloys contain a high level of Re content. Whereas enhancement of Re in the dendrite arms facilitates inhomogeneous distribution of other alloy elements, it become difficult and important to determine the heat treatment in Re-containing single crystal superalloys. Effects of heat treatments on microstructure and properties in a new Re-containing single crystal superalloy have been investigated in this work. The solidus and liquidus temperature measured by differential thermal analysis (DTA) is 1339 and 1371 ℃, respectively. The incipient melting temperature determined by metallographic testing method is in the range between 1305 and 1310 ℃. The results show that Ti resides preferentially followed by B and S in the incipient melting regions. γ' precipitates all display cubic after 4 h aged at 1080, 1100 and 1120 ℃ followed by air cooling (A.C.). The optimum heat treatment is 1290 ℃, 2 h+1320 ℃, 4 h, A.C.+1100 ℃, 4 h, A.C.+900 ℃, 24 h, A.C.. Microsegregation of alloy elements reduces significantly after this heat treatment. The rupture property performs well and the rupture life is up to 78.2 h under the condition of 1070 ℃ and 140 MPa.

Key words:  single crystal superalloy      incipient melting temperature      heat treatment     
Received:  30 December 2013     
ZTFLH:  TG146.1  
  TG156.1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00846     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/1011

Fig.1  Macrostructures of single crystal bars at cross section (a) and vertical section (b)
Fig.2  Dendrite morphologies of the as-cast specimen at cross section (a) and vertical section (b)
Fig.3  Typical microstructure of the as-cast specimen
Fig.4  γ' morphologies of the as-cast specimen at dendrite core (a) and interdendritic region (b)
Fig.5  DTA curves of the as-cast specimen
Fig.6  (γ+γ' ) eutectic after holding for 10 min at 1240 ℃ (a), 1260 ℃ (b) and 1280 ℃ (c)
Fig.7  SEM images of the as-cast specimen after holding at 1330 ℃ (a), 1320 ℃ (b), 1315 ℃ (c) and 1310 ℃ (d)
Fig.8  SEM-BSE image and elemental distributions for the incipient melting microstructure after holding at 1330 ℃ for 10 min
Fig.9  Incipient melting microstructure after pretreatment and holding at 1325 ℃ for 10 min
Fig.10  γ' morphologies at dendrite arm (a) and interdendritic region (b) after pretreatment and solution treatment
Fig.11  γ' morphologies after primary aging treatment at 1080 ℃ (a), 1100 ℃ (b) and 1120 ℃ (c) for 4 h
Aging treatment temperature Stress rupture life Elongation
h %
1080 68.5 19.84
1100 78.2 12.48
1120 55.8 13.12
Table 1  Rupture properties after different aging treatments under the condition of 1070 ℃ and 140 MPa
Fig.12  Typical microstructure of specimen after 1290 ℃, 2 h+1320 ℃, 4 h, A.C.+1100 ℃, 4 h, A.C.+900 ℃, 24 h, A.C.
Fig.13  Comparison of segregation ratio K before and after heat treatment
[1] Gell M, Duhl D N, Giamei A F. In: Tien J, Wlodek S, Morrow H, Gell M, Maurer G E eds., Superalloys 1980, Champion, PA: TMS, 1980: 205
[2] Erickson G L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 45
[3] Walston W S, O′Hara K S, Rose E W. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 27
[4] Guo J T. Acta Metall Sin, 2010; 46: 513
(郭建亭. 金属学报, 2010; 46: 513)
[5] Liu L, Huang T W, Xiong Y H, Yang A M, Zhao Z L, Zhang R, Li J S. Mater Sci Eng, 2005; A394: 1
[6] Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z. Acta Metall Sin, 2012; 48: 845
(刘 刚, 刘 林, 张胜霞, 杨初斌, 张 军, 傅恒志. 金属学报, 2012; 48: 845)
[7] Wright I G, Gibbons T B. Int J Hydrogen Energy, 2007; 32: 3610
[8] Safari J, Nategh S. J Mater Process Technol, 2006; 176: 240
[9] Appa Rao G, Kumar M, Srinivas M, Sarma D S. Mater Sci Eng, 2003; A355:114
[10] Li J, Wahi R P. Acta Metall, 1995; 43: 507
[11] Huang Q Y,Li H K. Superalloys. Beijing: Metallurgical Industry Press, 2000: 140
(黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 140)
[12] Yang J X. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006
(杨金侠. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[13] Wilson B C, Hickman J A, Fuchs G E. In: Fuchs G, James A W, Gabb T, McLean M, Harada H eds., Advanced Materials and Processes for Gas Turbines. Warrendale, PA: TMS, 2002: 145
[14] Diologent F, Caron P. Mater Sci Eng, 2004; A385: 245
[15] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[16] Sengupta A, Putatunda S K, Bartosiewicz L, Hangas J, Nailos P J, Peputapeck M, Alberts F E. J Mater Eng Perform, 1994; 3: 664
[17] Diologent F, Caron P. Mater Sci Eng, 2004; A385: 245
[18] Caron P, Henderson P J, Khan T, McLean M. Scr Metall, 1986; 20: 875
[19] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[20] MacKay R A, Ebert L J. Metall Trans, 1985; 16A: 1969
[21] Guan X R, Zheng Z, Tong J, Liu E Z, Yu Y S, Zhu Y X, Zhai Y C. Chin J Nonferrous Met, 2009; 19: 272
(管秀荣, 郑 志, 佟 健, 刘恩泽, 于永泗, 朱耀宵, 翟玉春. 中国有色金属学报, 2009; 19: 272)
[22] Sun W R, Guo S R, Lu D Z, Hu Z O. Mater Lett, 1997; 31: 195
[23] Semiatin S L, Kramb R C, Turner R E, Zhang F, Antony M M. Scr Mater, 2004; 51: 491
[24] Liu L R. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
(刘丽荣. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[25] Ping D H, Gu Y F, Cui C Y, Harada H. Mater Sci Eng, 2007; A456: 99
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[6] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[7] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[8] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[9] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[10] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[11] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[12] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[13] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[14] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[15] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
No Suggested Reading articles found!