Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 1003-1010    DOI: 10.11900/0412.1961.2013.00753
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF PARTIALLY MELTED ZONE OF TIG WELDING JOINT OF Ni-BASED INCONEL-718 SUPERALLOY
YE Xin1,2, HUA Xueming1,2(), WANG Min1,2, LOU Songnian1,2
1 Welding Engineering Institute, College of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

YE Xin, HUA Xueming, WANG Min, LOU Songnian. MICROSTRUCTURE EVOLUTION OF PARTIALLY MELTED ZONE OF TIG WELDING JOINT OF Ni-BASED INCONEL-718 SUPERALLOY. Acta Metall Sin, 2014, 50(8): 1003-1010.

Download:  HTML  PDF(8773KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Element segregation, such as Nb in Ni-based Inconel-718 superalloy, causes the precipitation of low melting point phase during solidification. The actual base metal can melt in a lower temperature and the structural continuity is damaged during welding thermo cycle curve. The liquid film easily generates between austenite grains and leads to stress concentration before solidifying into the low melting point phase. Microstructure evolution of Inconel-718 welding joint increases the hot crack sensitivity and changes mechanical property of the joint. The partially melted zone (PMZ) is close to the molten metal in the fusion zone, which is the most liquation crack sensitive region of welding joint heat affected zone (HAZ). Different microstructures exists among wrought, as-cast and homogenization Inconel-718 superalloy inducing weldability differences of these material. Especially, the solidus-liquidus curve differences of low melting point phase in PMZ notably affect the high temperature mechanical property of welding joint. The wrought, as-cast and homogenization Inconel-718 superalloy sheets were respectively welded by tungsten inert gas arc welding (TIG) with different heat inputs. The microstructure of PMZ was observed by OM and SEM. Alloy element content of intradendritic austenite, interdendritic segregated region and Laves phase was investigated by EDS. The theoretical solidus-liquidus temperature of these phases was calculated by Thermo-Calc software. The melting and solidification temperature of austenite and Laves in PMZ of different base metal was investigated to analyze the temperature range for the formulation of liquid film. The results show that the microstructure heredity phenomenon obviously exists in the PMZ of Inconel-718 welding joint. The equiaxed grains remain in the PMZ of wrought joint, and the dendritic structure is still kept in the PMZ of as-cast and homogenization joint. The slender Laves and particle MC phase precipitate along the boundary of the austenite in PMZ of welding joint. But the segregated region originally existed in base metal disperses. The calculating results show that the maximum solidus-liquidus temperature range is in as-cast base metal, secondary in homogenization, minimum in wrought. The width of PMZ is increased with the increasing heat input and PMZ of as-cast is larger than PMZ of wrought and homogenization Inconel-718 superalloy.

Key words:  Ni-based Inconel-718 superalloy      PMZ      segregation      liquid film      dendrite     
Received:  21 November 2013     
ZTFLH:  TG401  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00753     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/1003

Fig.1  Schematic of welding joint (PMZ—partially melted zone, CGHAZ—coarse grain heat affected zone, WM—weld metal)
Fig.2  OM (a) and SEM (b) images of base metal for wrought Inconel-718 superalloy
Fig.3  OM (a) and SEM (b) images of weld joint for wrought Inconel-718 superalloy
Fig.4  OM (a) and SEM (b) images of base metal for as-cast Inconel-718 superalloy
Fig.5  OM (a) and SEM (b) images of weld joint for as-cast Inconel-718 superalloy
Fig.6  OM (a) and SEM (b) images of base metal for homogenization Inconel-718 superalloy
Fig.7  OM (a) and SEM (b) images of weld joint for homogenization Inconel-718 superalloy
Heat input / (kJ?cm-1) PMZ width /mm
Wrought As-cast Homogenization
2.4 0.218±0.022 0.335±0.022 0.247±0.028
3.6 0.292±0.019 0.426±0.028 0.339±0.016
4.8 0.401±0.013 0.541±0.015 0.423±0.031
Table 1  Effect of heat inputs on PMZ width of welding joint for Inconel-718 superalloy with different treatments
Fig.8  Austenite (a) and carbide (b) equilibrium mass fraction diagrams for Inconel-718 superalloy
Fig.9  Ni-Nb (a) and (b) Ni-C equilibrium binary phase diagrams for Inconel-718 superalloy
Type Zone Region Mass fraction /% Solidus Liquidus
Fe Nb K K
As-cast Base metal Laves 16.19 26.02 1391 1621
Segregated γ 17.30 8.17 1429 1586
Intradendriticγ 24.87 2.69 1553 1668
Homogenization Laves 12.12 27.62 1376 1635
Segregated γ 20.59 10.19 1423 1556
Intradendriticγ 25.21 4.87 1462 1631
As-cast PMZ Laves 21.54 26.30 1419 1625
Intradendriticγ 29.25 1.91 1593 1693
Homogenization Laves 21.50 24.86 1430 1600
Intradendriticγ 28.13 2.32 1572 1683
Table 2  Element contents and theoretical solidus and liquidus temperatures on as-cast and homogenization in base metal and PMZ zone for Inconel-718 superalloy
Base metal Liquidus of austenite Solidus of low melting phase Temperature range
K K K
Wrought 1630 1451 179?
As-cast 1668 1391 277
Homogenization 1631 1376 255
Table 3  The theoretical solidus and liquidus temperature and solid-liquid coexistence temperature range of base metal for Inconel-718 superalloy
[1] Antonsson T, Fredriksson H. Metall Mater Trans, 2005; 36B: 85
[2] Manikandan S G K, Sivakumar D, Rao K P, Kamaraj M. J Mater Process Technol, 2014; 214: 358
[3] El-Bagoury N, Omar A A, Ogi K. Metall Microstr Anal, 2012; 1: 35
[4] Moosavy H N, Aboutalebi M, Seyedein S, Goodarzi M, Mapelli C. Mater Sci Technol-Lond, 2013; 30: 339
[5] Moosavy H N, Aboutalebi M R, Seyedein S H, Goodarzi M, Khodabakhshi M, Mapelli C, Barella S. Opt Laser Technol, 2014; 57: 12
[6] Osoba L, Gao Z, Ojo O. J Metall Eng, 2013; 2: 88
[7] Idowu O A, Ojo O A, Chaturvedi M C. Mater Sci Eng, 2007; A454: 389
[8] Hong J K, Park J H, Park N K, Eom I S, Kim M B, Kang C Y. J Mater Process Technol, 2008; 201: 515
[9] Odabasi A, Unlu N, Goller G, Eruslu M N. Metall Mater Trans, 2010; 41A: 2357
[10] Huang X, Richards N L, Chaturvedi M C. Mater Manuf Process, 2004; 19: 285
[11] Cao X, Rivaux B, Jahazi M, Cuddy J, Birur A. J Mater Sci, 2009; 44: 4557
[12] Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2012; 28: 609
[13] Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2012; 28: 733
[14] Andersson J, Sjoberg G P, Viskari L, Chaturvedi M. Mater Sci Technol-Lond, 2013; 29: 43
[15] Saunders N, Fahrmann M, Small C J. In: Pollock T M, Kissinger R D, Bowman R D eds., Superalloys 2000, Champion: The Minerals, Metals and Materials Society, 2000: 803
[16] Tancret F. Comput Mater Sci, 2007; 41: 13
[17] Ojo O A, Tancret F. Comput Mater Sci, 2009; 45: 388
[18] Fu S H, Dong J X, Zhang M C, Xie X S. Mater Sci Eng, 2009; A499: 215
[19] Wang L, Li C Q, Dong J X, Zhang M C. Chem Eng Commun, 2009; 196: 754
[20] Wang L, Yijun Y, Dong J X, Zhang M C. Chem Eng Commun, 2010; 197: 1571
[21] Wang L, Gong H, Zhao H F, Dong J X, Zhang M C. China Foundry, 2012; 9: 263
[22] Wang L, Dong J X, Tian Y L, Zhang L. J Univ Sci Technol, 2008; 15B: 594
[23] Ojo O A. Mater Sci Technol-Lond, 2007; 23: 1149
[24] Chintababu U, Chary V R, Gupta S P. Can Metall Quarterly, 2007; 46: 175
[25] Valdes J R, Kim D E, Shang S L, Liu X B, King P, Liu Z K. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G eds., Superalloys 2008, Woodard: Wiley, 2008: 333
[26] Mathon M, Connétable D, Sundman B, Lacaze J. Computer Coupling Phase Diagrams Thermochem, 2009; 33: 136
[27] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-Base Alloys. Hoboken: Wiley, 2009: 69
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[4] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[5] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[7] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[8] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[9] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[10] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
[12] ZHANG Yong, LI Xinxu, WEI Kang, WEI Jianhuan, WANG Tao, JIA Chonglin, LI Zhao, MA Zongqing. Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting[J]. 金属学报, 2020, 56(8): 1123-1132.
[13] GAI Yibing, TANG Fawei, HOU Chao, LU Hao, SONG Xiaoyan. First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System[J]. 金属学报, 2020, 56(7): 1036-1046.
[14] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[15] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
No Suggested Reading articles found!