Please wait a minute...
金属学报  1998, Vol. 34 Issue (5): 497-505    
  论文 本期目录 | 过刊浏览 |
钢液RH精炼中喷粉脱硫的动力学
魏季和;朱守军;郁能文
上海大学上海市钢铁冶金重点实验室;上海;200072;上海大学上海市钢铁冶金重点实验室;上海;200072;上海大学上海市钢铁冶金重点实验室;上海;200072
KINETICS OF DESULPHURIZATION BY POWDER INJECTION AND BLOWING IN RH REFINING OF MOLTEN STEEL
WEI Chiho;ZHU Shoujun; YU Nengwen (Shanghai Enhanced Laboratory of Ferrous Metallurgy; Shanghai University; Shanghai 200072)
引用本文:

魏季和;朱守军;郁能文. 钢液RH精炼中喷粉脱硫的动力学[J]. 金属学报, 1998, 34(5): 497-505.
, , . KINETICS OF DESULPHURIZATION BY POWDER INJECTION AND BLOWING IN RH REFINING OF MOLTEN STEEL[J]. Acta Metall Sin, 1998, 34(5): 497-505.

全文: PDF(735 KB)  
摘要: 考察和分析了钢液RH喷粉脱硫过程及机理,探讨了该过程的速率.基于双重阻力传质理论和体系内的质量衡算,建立了RH喷粉脱硫动力学模型,确定了模型各有关参数,包括各传质系数和钢液内参与脱硫反应的粉量等.以该模型对300tRH装置内设定的不同初始硫含量和喷粉量下喷吹石灰基粉剂脱硫作了计算和模拟,相应的钢液环流量和喷粉速率分别取为100t/min和150kg/min;设定的初始硫含量(质量分数,10-4%)和喷粉量分别为70,60,50,40,30;20和10,8,6,5,4,3kg/t—steel对每种工况计算了8个循环,整个脱硫处理时间为24min.结果表明,由该模型所作的估计与一些工业性数据相当吻合;在(60—80)×10-4%的初始硫含量下,喷吹3—5kg/t—steel石灰基粉剂(85%CaO+15%CaF2),总处理时间12—20min,有可能使钢液硫含量达到(5—10)×10-4%以下水平;强化喷粉操作,增大钢液环流量可有效提高RH喷粉脱硫的速率
关键词 RH过程喷粉脱硫石灰基粉剂动力学    
Abstract:The desulphurization process by powder injection and blowing in RH refining of molten steel and its mechanism have been considered and analyzed. Based on the two-resistance mass transfer theory and the mass balance of sulphur in the system, a kinetic model for the process has been developed. The ralated parameters of the model have been determined. Calculating and modelling for the process by injecting and blowing the lime based powder flux under the assumed operating modes in a RH degasser of 300 t capacity have been carried out using the model. The corresponding circulation rate and the powder injection and blowing rate were taken as 100 t/min and 150 kg/min, respectively. The initial contents of sulphur and the amounts of powder injection and blowing were respectively assumed to be 70, 60, 50, 40, 30, 20×10-4% (massfraction) and 10, 8, 6, 5, 4, 3 kg/t-steel. The total treatment time for desulphurization under each mode was set up to be 24 min that is equivalent to eight circulation cycles of liquid steel to be treated. The results indicated that the prediction made by this model is in good agreement with some data of the industrial experiments and production practice, injecting and blowing the lime-based powder flux(85%CaO+15%CaF2)of 3-5 kg/t-steel with the total treatment time of 12-20 min, it is entirely possible to make the sulphur content in molten steel decrease to the ultra-low level below (5- 10)× 10-4% from (60-80)×10-4%; intensifying the powder injection and blowing operation and increasing the circulation rate of liquid steel may effectively raise the rate of the process in RH refining.
Key wordsRH refining    desulphurization by powder injection and blowing    lime-base powder flux    kinetics
收稿日期: 1998-05-18     
基金资助:国家自然科学基金!56474016
1远藤公一.制铁研究,19892 335:20(Endoh K. Sada Tetsu Togisata,1989; 335:20)
2 Endoh K.Nippon Steel Technic Rep,1990;45(4)
3Hatakeyama T,Mizukami Y,Igo K,Oita M.Ircn&Steelmaker,1989;15(7):23
4 Myrayama N,Mizukami Y,Azuma K,Onoyma S,Imais T.Proc 6th International Iron and Steel Congress,Vol.3, Napoya: The Iron and Steel Institute of Japan, 1990 151
5 Hale R J,Merk R,Otterman B A Steelmaking Conf Proc,ISS-AIME,Detroit,MI,1990:69
6上原搏英,水藤正人,高桥清志,有吉政弘,桐原理,加藤嘉英。CAMP-ISIJ,1922 5:1240(Ueharal H.Suito M,Takahashi K,Ariyoshi S,Kirihara T,Kato Y.CAMP-ISIJ,1992; 5:1240)
7冈田泰和,深川信,家田幸治,海老原明彦,池宫洋行,真目薰CAMP—ISIJ, 1992;5:1238(Okada Y, Fukawa M, Yata K, Ebihara A, Ikemiya N, Makoto M CAMP—ISIJt 1992 5: 1238)
8冈田泰和,真屋敬一。铁钢,1994;80(1):T9(Okada Y. Shinya H. Tetsu Hagane, 1994; 80(1): T9)
9川合保治,森克已,三宫好史。铁钢,1975;61(1):29(Kawai Y,Mori K,Sanomiya Y.Tetsu Hagane.1975;61(1):29)
10 Oeters F, Strohmenger P, Pluschkell W Arch Eisenhuttenwes, 1973 44: 727
11溶铁·溶滓物性植便览,溶钢·溶滓部会报告,东京:日本铁钢协会,1971:70(Youtetsu.Youkasu No MonoshoUe Yasukata ,YouHagane.Youkasu Tomokazu TsuguNori,Tokyo:ISIJ,1971:70)
12Tsujino R, Nakashima J, Hirai M, Sawada I. ISIJ Int; 1989: 29(7):589
13Szatkowshi M,Tsai M C.Ironmaking Steelmaking,1991;17(4):65
14 Geiger G H,Poirier D R.Transport Phenomena in Metallurgy,Reading Mass:Addison-Wesley;1973:18
15饭田孝道,上田满,森田普一郎.铁钢,1977;63(4):163(Handa N,Kamita M,Morita H,Tetsu Hagane,1977; 63(4):163)
16 Komai T,Mizukami Y, Proc 7th International Conference on Vacuum Metallurgy,Tokyo:ISIJ,1982:1383
17桐原理,加藤嘉英,田口整司,藤井辙也,上原搏英,大宫茂CAMP—ISIJ,1992; 5:1239(Kirihara T, Kato Y, Taguchi H, Fujii W, Uehara H, Osora S. CAMP-ISIJ, 1992; 5: 1239)
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[8] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[9] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[10] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[11] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[12] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
[13] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[14] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[15] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.