Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1421-1424    
  论文 本期目录 | 过刊浏览 |
一个基于平均N面体模型的晶粒长大速率方程
岳景朝1;2;王浩1;刘国权1;3;栾军华1
1. 北京科技大学材料科学与工程学院; 北京 100083
2. 中钢集团邢台机械轧辊有限公司; 邢台 054025
3. 北京科技大学新金属材料国家重点实验室; 北京 100083
A GRAIN GROWTH RATE EQUATION BASED ON AVERAGE N–HEDRA MODEL
YUE Jingchao 1;2; WANG Hao 1; LIU Guoquan 1;3; LUAN Junhua 1
1. School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
2. Sinosteel Xingtaimachinery and Millroll Co.; Ltd; Xingtai 054025
3. State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
引用本文:

岳景朝 王浩 刘国权 栾军华. 一个基于平均N面体模型的晶粒长大速率方程[J]. 金属学报, 2009, 45(12): 1421-1424.
, , , . A GRAIN GROWTH RATE EQUATION BASED ON AVERAGE N–HEDRA MODEL[J]. Acta Metall Sin, 2009, 45(12): 1421-1424.

全文: PDF(430 KB)  
摘要: 

基于Glicksman近期提出的平均N面体模型(ANHs), 研究了拓扑分组下晶粒表面积的变化规律, 导出了一个可由简单数学关系式近似表示的具有拓扑依赖性的晶粒长大速率方程. 速率方程显示晶粒的表面积变化速率与其面数的平方根近似成线性关系.

关键词 晶粒长大 平均N面体模型 拓扑学    
Abstract

The law of grain growth is one of the classic problems in materials science. In 1952, an exact formula named von Neumann relation was derived for grain growth in two–dimensional space that the growth rate of a grain depends only on its number of sides n. In three dimensions, topology– dependent rate equations of grain growth are usually proposed to describe the individual grain growth. Such equations can describe the mean growth rate of grains within the same topological class and can be used to derive general properties of polycrystals. In this paper, based on average N–hedra (ANHs) model proposed by Glicksman recently, the law of the change of grain surface area was studied and a topology–dependent rate equation of grain surface area change was derived. Both the contributions of the grain boundary motion and grain edges motion to the grin groth were considered in the derivation. This topology–dependent rate equation can be expressed through a simple relation that the change rate of grain surface area is proportional to the square root of the number of grain faces. This result can assist in a better understanding of the process of grain growth rom a statistical point of view and is similar to the reported topology-dependent grain growth equations.

Key wordsgrain growth    average N-hedra (ANHs)    topology
收稿日期: 2008-12-15     
ZTFLH: 

TG111

 
基金资助:

国家自然科学基金项目50671010, 50901008和50871017以及高等学校博士学科点专项科研基金项目200800080003资助

作者简介: 岳景朝, 男, 1984年生, 硕士生

[1] Wang H, Liu G Q. Appl Phys Lett, 2008; 93: 131902
[2] Wang H, Liu G Q. Acta Metall Sin, 2008; 44: 769
(王浩, 刘国权. 金属学报, 2008; 44: 769)
[3] Wang C, Liu G Q, Yu H B. Acta Metall Sin, 2004; 12: 1233
(王超, 刘国权, 于海波. 金属学报, 2004; 12: 1233)
[4] Wang H, Liu G Q, Qin X G. Acta Metall Sin, 2008; 44: 13
(王浩, 刘国权, 秦湘阁. 金属学报, 2008; 44: 13)
[5] Hillert M. Acta Metall, 1965; 13: 227
[6] River N. Philos Mag, 1983; 47B: L45
[7] Mullins W W. Acta Metall, 1989; 37: 2979
[8] Glazier J A. Phys Rev Lett, 1993; 70: 2170
[9] Hilgenfeldt H, Kraynik A M, Reinelt D A, Sullivan J M. Europhys Lett, 2004; 67: 484
[10] Glicksman M E. Philos Mag, 2005; 85: 3
[11] MacPerson R D, Strolovitz D J. Nature, 2007; 446: 1053
[12] Yu H B, Liu G Q. Chin Sci Bull, 1996; 41: 2000
(于海波, 刘国权. 科学通报, 1996; 41: 2000)
[13] Liu G Q, Song X Y, Yu H B, Gu N J. Acta Metall Sin, 1999; 35: 245
(刘国权, 宋晓艳, 于海波, 谷南驹. 金属学报, 1999; 35: 245)
[14] Wang H, Liu G Q. Acta Metall Sin, 2008; 44: 1332
(王浩, 刘国权. 金属学报, 2008; 44: 1332)
[15] Glicksman M E, Rios P R. Philos Mag, 2007; 87: 189
[16] Glicksman M E, Rios P R. Z Metallkd, 2005; 96: 1099
[17] Glicksman M E. J Mater Sci, 2005; 40: 2149
[18] Glicksman M E. XXIICTAM. Warsaw Poland, 2004
[19] Rios P R, Glicksman M E. Mater Res, 2006; 9: 231
[20] Rios P R, Glicksman M E. Acta Mater, 2006; 54: 5313
[21] Rios P R, Glicksman M E. Acta Mater, 2006; 54: 1041
[22] Rios P R, Glicksman M E. Acta Mater, 2007; 55: 1565
[23] Rios P R, Glicksman M E. Acta Mater, 2008; 56: 1165
[24] Glicksman M E, Rios P R, Lewis D J. Acta Mater, 2007; 55: 4167
[25] Cahn J W. Trans AIME, 1967; 239: 611
[26] Cox S J, Fortes M A. Philos Mag Lett, 2003; 83: 281
[27] Cox S J, Graner F. Phys Rev, 2004; 69E: 031409
[28] Wakai F, Enomoto N, Ogawa H. Acta Mater, 2000; 48: 1297

[1] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[3] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[4] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[5] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[6] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[7] 付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
[8] 韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
[9] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
[10] 陈礼清 隋凤利 刘相华. Inconel 718合金方坯粗轧加热过程晶粒长大模型[J]. 金属学报, 2009, 45(10): 1242-1248.
[11] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .
[12] 韩清超; 宋晓艳; 李凌梅; 刘雪梅 . 基于热力学函数的纳米晶粒长大Cellular Automaton仿真研究[J]. 金属学报, 2008, 44(4): 495-500 .
[13] 王浩; 刘国权 . 凸形多面体个体晶粒的三维von Neumann准确方程[J]. 金属学报, 2008, 44(11): 1332-1334 .
[14] 王浩; 刘国权; 秦湘阁 . 三维晶粒长大速率方程的大尺度Potts模型Monte Carlo仿真验证[J]. 金属学报, 2008, 44(1): 13-18 .
[15] 孙亚; 刘国权; 王超 . 相场仿真二维晶粒长大过程中的尺寸分布和拓扑演变[J]. 金属学报, 2004, 40(6): 609-.