Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1207-1211     
  论文 本期目录 | 过刊浏览 |
纳米Pt膜的晶粒尺寸及其对热导率的影响
曹炳阳;张清光;张兴;TAKAHASHI Koji;IKUTA Tatsuya;乔文明;FUJII Motoo
清华大学工程力学系热科学与动力工程教育部重点实验室; 北京100084
GRAIN SIZE OF PLATINUM NANOFILMS FABRICATED BY EB-PVD AND ITS EFFECT ON THERMAL CONDUCTIVITY
CAO Bingyang; ZHANG Qingguang; ZHANG Xing;TAKAHASHI Koji; IKUTA Tatsuya
Key laboratory for Thermal Science and Power Engineering of Ministry of Education; Department of Engineering Mechanics; Tsinghua University;Beijing 100084
引用本文:

曹炳阳; 张清光; 张兴; TAKAHASHI Koji; IKUTA Tatsuya; 乔文明; FUJII Motoo . 纳米Pt膜的晶粒尺寸及其对热导率的影响[J]. 金属学报, 2006, 42(11): 1207-1211 .
, , , , , , . GRAIN SIZE OF PLATINUM NANOFILMS FABRICATED BY EB-PVD AND ITS EFFECT ON THERMAL CONDUCTIVITY[J]. Acta Metall Sin, 2006, 42(11): 1207-1211 .

全文: PDF(741 KB)  
摘要: 采用电子束—物理气相沉积法(EB-PVD)制备了6个厚度为15~62 nm的铂薄膜,研究了纳米薄膜的晶粒尺寸及其对导热性质的影响规律。薄膜厚度小于30 nm时,晶粒平均尺寸接近于薄膜的厚度,晶粒尺寸随着薄膜厚度的增加而增大并趋于定值,当薄膜厚度大于30 nm时,晶粒尺寸约为20 nm。受薄膜表面所引起的尺寸效应和内部晶粒的晶界效应的综合影响,铂纳米薄膜的热导率大大低于体材料的值,并且,纳米薄膜的热导率随着薄膜厚度的增加而增大并趋于一个低于体材料热导率的值35 W/mK。
关键词 铂纳米薄膜热导率晶粒尺寸晶界效应尺寸    
Abstract:Six platinum films with thickness 15-62 nm have been fabricated by the method of electron beam- physical vapor deposition (EB-PVD). The grain sizes of the platinum nanofilms and its effect on the thermal conductivity have been studied experimentally. It is found that the grain size increases with the nanofilm thickness increasing and goes to a constant about 20 nm. The grain size is nearly comparable with the nanofilm thickness with the thickness less than 30 nm, while becomes much less than the nanofilm thickness with the thickness larger than 30 nm. Influenced by the size effect caused by the nanofilm interface and the grain boundary effect by the grain structure, the thermal conductivity of the platinum nanofilms is greatly lower than that of the bulk platinum. It is noted that the thermal conductivity of the studied platinum nanofilms increases with the thickness increasing and runs to 35 W/mK, which is much lower than that of the bulk material due to the grain boundary effect.
Key wordsnanofilm    thermal conductivity    grain size    grain boundary effect    size effect
收稿日期: 2006-02-24     
ZTFLH:  TG146.3  
[1] Guo Y, Chang G R, Ma S L, Xu K W. Acta Metall Sin, 2005; 41: 985 (郭岩,畅庚榕,马胜利,徐可为.金属学报,2005;41:985)
[2] Pei Z L, Zhang X B, Wang T G, Gong J, Sun C, Wen L S. Acta Metall Sin, 2005; 41: 84 (裴志亮,张小波,王铁钢,宫骏,孙超,闻立时.金属学报,2005;41:84)
[3] Fu E G, Zhuang D M, Zhang G. Acta Metall Sin, 2005; 41: 333 (付恩刚,庄大明,张弓.金属学报, 2005;41:333)
[4] Tien C L, Majumdar A, Gerner F M. Microscale Energy Transport. Washington, D C: Taylor & Francis, 1997: 1
[5] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Phys Rev Lett, 2005; 95: 065502
[6] Zhang X, Fujiwara S, Fujii M. Int J Thermophys, 2000; 21: 965
[7] Vashaee D, Shakouri A. Phys Rev Lett, 2004; 92: 106103
[8] Pukushima A, Yagami K, Tulapurkar A A, Suzuki Y, Kubota H, Yamamoto A, Yuasa S. Jpn J Appl Phys, 2005; 44: L12
[9] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R, Phillpot S R. J Appl Phys, 2003; 93: 793
[10] Feng X L, Li Z X, Guo Z Y. Chin Phys Lett, 2001; 18: 416
[11] Stewart D, Norris P M. Microscale Thermophys Eng, 2000; 4: 89
[12] Zhang X, Xie H Q, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Appl Phys Lett, 2005; 86: 171912
[13] Zhang X, Fujii M, Takahashi K, Ikuta T. In: Proc 26th Japan Symp on Thermophysical Properties, Tsukuba, Japan: JSTP, 2005: 349m
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[5] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[6] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[7] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[8] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[9] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[10] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[11] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] 赵立东, 王思宁, 肖钰. 热电材料的载流子迁移率优化[J]. 金属学报, 2021, 57(9): 1171-1183.
[13] 周洪宇, 冉珉瑞, 李亚强, 张卫冬, 刘俊友, 郑文跃. 颗粒尺寸对金刚石/Al封装基板热物性的影响[J]. 金属学报, 2021, 57(7): 937-947.
[14] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[15] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.