Please wait a minute...
金属学报  2006, Vol. 42 Issue (12): 1253-1258     
  论文 本期目录 | 过刊浏览 |
铝合金回归再时效状态的超峰时效强度行为分析
宁爱林;刘志义;冯 春;曾苏民
中南大学材料科学与工程学院; 邵阳学院机械工程系
Analysis on the behavior exceeding peak-aging strength of aluminum alloy at condition of RRA
;;
中南大学材料科学与工程学院; 邵阳学院机械工程系
引用本文:

宁爱林; 刘志义; 冯春; 曾苏民 . 铝合金回归再时效状态的超峰时效强度行为分析[J]. 金属学报, 2006, 42(12): 1253-1258 .

全文: PDF(1251 KB)  
摘要: 3种Al-Zn-Mg-Cu合金经过100℃或者120℃预时效24 h, 并在200℃分别回归一定时间后再时效, 均显示出超过该合金预时效状态的强度, 甚至高于相同温度单级时效的峰值强度, 最高达到795 MPa, 且显示出较好的延伸率. 显微组织分析及微区成分分析表明, 较短时间的回归处理所引起的晶界无析出带经过再时效后变窄甚至消失, 对应的晶内组织也非常弥散. 而峰时效状态下虽然晶内组织弥散, 但都显示出明显的晶界无析出带组织特征. 铝合金回归再时效(RRA)状态的超峰值时效强度的原因可以归结为, 再时效使回归时产生的晶界无析出带变窄或消失, 使晶界强度提高; 与此同时, 晶内仍然保持和获得更加弥散的组织状态及更高的析出强化效应.
关键词 铝合金回归再时效时效强度    
Abstract:The behavior exceeding peak-aging strength in the RRA condition of three different aluminum alloys has been studied.The results of hardness and tensile strength test indicate that after presaging at 100℃ or 120℃ and retrogressing at 200℃ for various time and reaging treatment,the hardness and strength of studied alloys are all above the value of presaging condition,some of them even exceed the value of peak aging(T6) condition .And the alloys exhibit a desired combination of strength and elongation after RRA treatment.TEM observation shown that the PFZs formed during retrogressing in short time become narrowed and even disappeared after reaging treatment.In this condition ,the precipiatates in the matrix are maily G.P zones and a few η’precipitates.However, the PFZs formed during retrogressing for a long time can not be narrowed after reaging treatment. In this condition ,the precipiatates in the matrix are coarsen.In T6 condition the precipitates has a uniform distribution with obvious characteristic of PFZs and the volume fraction of η’phase is somewhat increased.Corresponding EDS analysis indicates that the PFZs formed during retrogression are the depletion area of solute atoms.On one hand ,This area can be reduced and even eliminated after short time retrogression and reaging treatment.On the other hand ,this area can not be narrowed when retrogressed for long time and reaged. It is suggested that the behavior exceeding peak-aging strength in the RRA condition ascribes to the narrowing and even disappearing of PFZs formed during retrogression in the process of reaging treatment, which reinforces the grain-broundary, while the precipitates in the matrix of the alloys still keep or even exhibit a more dispersed distribution, and obtain a higher effect of precipitation strengthening.
Key words
收稿日期: 2006-01-04     
ZTFLH:  TG146.2  
[1] Cina B. US Pat, 3,856,584, 1974-12-24
[2] Wallace W, Beddoes J C, Demalherbe M C. Can Aeronaut Space J, 1981; 27: 222
[3] Islam M U, Wallace W. Met Technol, 1983; 10(10): 386
[4] Nguyen C D, Rajan K, Wallace W. Metall Trans, 1983; 14A: 1843
[5] Danh N, Rajan, K, Wallace W. Metall Trans, 1985; 16A: 2068
[6] Islam M U, Wallace W. Met Technol, 1984; 11(8): 320
[7] Holt R T, Parameswaran V R, Wallace W. Can Aeronaut Space J, 1996; 42: 83
[8] Rajan K, Wallace W, Beddoes J C. J Mater Sci, 1982; 17: 2817
[9] Oonishi C. Heat Treat, 1992; 32(2): 83 (大西忠一.热处理,1992,32(2):83)
[10] Oliveira A F Jr. Mater Sci Eng, 2004; A379: 321
[11] Meng Z F, Zheng Y, Long H W, Liu Y H. Acta Metall Sin, 1997; 33: 479 (孟昭富,郑勇,龙厚文,刘玉惠.金属学报,1997;33:479)
[12] Mo Z M, Zheng Z Q. Alum Process, 1996; 19(1): 28 (莫志民,郑子樵.铝加工, 1996;19(1):28)
[13] Ural K. J Mater Sci Lett, 1994; 13: 383
[14] Park J K, Ardell A J. Acta Metall Mater, 1991; 39: 591
[15] Park D S. Mater Sci Technol, 1995; 11: 921
[16] Knano M, Araki I, Cui Q. Mater Sci Technol, 1994; 10: 599
[17] Robinson J S, Whelan S D, Cudd R L. Mater Sci Technol, 1999; 15: 717
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[8] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[11] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[12] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[13] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[14] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[15] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.