Please wait a minute...
金属学报  2006, Vol. 42 Issue (3): 325-330     
  论文 本期目录 | 过刊浏览 |
挤压铸造SiC/ZL109铝合金双连续相复合材料的凝固组织
赵龙志; 曹小明; 田 冲; 胡宛平; 张劲松
金属研究所
Solidification of squeeze casting SiC/Al co-continuous composites
引用本文:

赵龙志; 曹小明; 田冲; 胡宛平; 张劲松 . 挤压铸造SiC/ZL109铝合金双连续相复合材料的凝固组织[J]. 金属学报, 2006, 42(3): 325-330 .

全文: PDF(723 KB)  
摘要: 用挤压铸造法制备了SiC/Al双连续相复合材料,研究了工艺参数和SiC泡沫增强体对基体凝固组织的影响,以及复合材料的凝固机制。结果表明,工艺参数对复合参数材料凝固组织有重要的影响。正压加压制备的复合材料组织比反压加压均匀,提高复合压力可以细化基体的组织,但效果不明显。随着SiC泡沫增强体预热温度的降低,基体中α-Al柱状枝晶晶粒逐渐减小。SiC泡沫增强体对基体的晶粒尺寸没有明显的影响,但是改变了晶粒的形态。泡沫孔内的α-Al初晶表现为粗大的柱状晶,其方向垂直于泡沫增强体的筋。泡沫孔的尺寸越小,越容易形成枝晶组织,枝晶的方向性越强。SiC/Al双连续相复合材料基体凝固时,α-Al首先在泡沫筋的附近形核,然后逐渐向泡沫孔的中心长大。α-Al枝晶形成轮廓以后,中心富硅区发生共晶反应,形成筋表面的共晶硅。
关键词 双连续相复合材料工艺参数碳化硅泡沫    
Abstract:SiC/Al co-continuous composites were fabricated by squeeze casting method, and the effect of SiC foam and process parameters on their solidification, the mechanism of solidification were investigated. The results show the process parameters play important roles in the solidification of composites. The microstructure of composites fabricated by positive squeeze is more uniform than that of composites made by inverse squeeze. The grain of composites is becoming smaller with the increase of squeeze casting pressure, but the change is not obvious. And the grains of composites is also bigger with the enhance of preheat temperature of SiC foam reinforcement. The size of grain is not obviously change, but the morphology of grain is different when the reinforcement is joined into the matrix alloy. The column dendrite that is perpendicular to the strut of SiC foam is easily got when the aperture of reinforcement is smaller. When SiC/Al composites start to solidify, the primary column dendrite α-Al is gotten near the strut of SiC foam, firstly. Then column dendrite α-Al is present after α-Al is growing into the central of aperture. At last, the eutectic silicon appears at the central of aperture where different column dendrite α-Al gathers before the eutectic reaction occurs at the surface of strut.
Key wordsco-continuous composites    process parameters    SiC foam    solidification mechanism
收稿日期: 2005-08-08     
ZTFLH:  TB333  
[1] Ibrahim I A, Mohamed F A, Lavernia E J. J Mater Sci, 1991; 26: 137
[2] Lloyd D J. Int Mater Rev, 1994; 39(1): 1
[3] Tszeng T C. Composites, 1998; 29B: 299
[4] Elomari S, Skibo M D, Sundarrajan A, Richards H. Compos Sci Technol, 1998; 58: 369
[5] Gnjidic Z, Bozic D, Mitkov M. Mater Charact, 2001; 47: 129
[6] Yoshimura H N, Goncalves M, Goldenstein H. Key Eng Mater, 1997; 127-131: 984
[7] Clarke D R. J Am Ceram Soc, 1992; 75: 739
[8] Balch D K, Fitzgerald T J, Michaud V J, Mortensen A, Shen Y L, Suresh S. Metall Mater Trans, 1996; 27A: 3700
[9] Zeschky J, Lo J, Hofner T, Greil P. Mater Sci Eng, 2005; A403: 215
[10] Peng H X, Fan Z, Evans J R G. Mater Sci Eng, 2001; A303: 37
[11] Mattern A Huchler B, Staudenecker D, Oberacker R, Nagel A, Hoffmann M J. J Eur Ceram Soc, 2004; 24: 3399
[12] Etter T, Kuebler J, Frey T, Schulz P, Loffler J F, Uggow- itzer P J. Mater Sci Eng, 2004; A386: 61 [13] Lii D F, Huang J L, Chang S T. J Eur Ceram Soc, 2002; 22: 253
[14] Trojanova Z, Gartnerova V, Luka P, Drozd Z. J Alloys Compd, 2004; 378: 19
[15] Zhentg M Y, Wu K, Liang H C, Kamado S, Kojima Y. Mater Lett, 2002; 57: 558
[16] Yong M S, Clegg A J. J Mater Process Technol, 2005; 168: 262
[17] Reihani SMS. Mater Design, 2005; 27: 216
[18] Zhang Q, Chen G Q, Wu G H, Xiu Z Y, Luan B F. Mater Lett, 2003; 57: 1453
[19] Wu S Q, Wei Z S, Tjong S C. Compos Sci Technol, 2000; 60: 2873
[20] Chu S J, Wu R J. Compos Sci Technol, 1999; 59: 157
[21] Kim B G, Dong S L, Park S D. Mater Chem Phys, 2001; 72: 42
[22] Yu Z Q, Wu G H, Jiang L T, Sun D L. Mater Lett, 2005; 59: 2281
[23] Zhang X X , Wang D Z , Geng L. J Mater Sci Lett, 2003; 22: 861
[24] Mortensen A, Cornie J A, Flemings M C. Metall Trans, 1988; 19A: 709
[25] Dutta B, Surappa M K. Composites, 1998; 29A: 565
[26] Brasczynski J, Zyska A. Mater Sci Eng, 2000; A278: 195
[27] Nagarajan S, Dutta B, Surappa M K. Compos Sci Technol, 1999; 59: 897
[28] Mortensen A, Jin I. Int Mater Rev, 1992; 37: 101
[29] Satyanarayana K G, Ojha S N, Kumar D N N, Sastry G V S. Mater Sci Eng, 2001; A304-306: 627
[30] Youssef Y M, Dashwood R J, Lee P D. Mater Sci Eng, 2005; A391: 427
[31] Eardley E S, Flower H M. Mater Sci Eng, 2003; A359: 303
[32] Souza S A, Rios C T, Coelho A A, Ferrandini P L, Gama S, Caram R. J Alloys Compd, 2005; 402: 156
[33] Xing H W, Cao X M, Hu W P, Zhao L Z, Zhang J S. Mater Lett, 2005; 59: 1563
[34] Zhao L Z, Cao X M, Hu W P, Zhang J S. J Chin Mater Res, 2005; 19: 485 (赵龙志,曹小明,胡宛平,张劲松.材料研究学报,2005;19: 485)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[5] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[8] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[9] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[10] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[11] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[12] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[13] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.